信息隐藏|Channel Attention Image Steganography With Generative Adversarial Networks

来源:

提出问题:现有的端到端式的GAN图像隐写方法生成的隐写图像质量有待提高,且信息提取的误码率很大,导致在实际应用中需要引入更多的纠错码,从而降低了有效容量。考虑到生成隐写图像和秘密信息提取的过程中,嵌入与提取的本质是其余图像高维特征图的融合与分离,本文对特征图做了观察并发现其不同通道所包含的有意义的信息量不同,而低信息量的无用通道可能会转化为网络输出中的噪声。

解决问题:针对这一问题本文采用注意力机制校正图像特征图,通过建模通道之间的相关性得到各通道的重要程度,抑制无用通道的特征,削弱网络输出结果中噪声的存在,使得生成的隐写图像的质量和信息提取精度得到了提升。

一种基于GAN (CHAT-GAN)的具有通道注意机制的图像隐写的新型端到端网络架构。

三个子网络:生成器、提取器、隐写分析器作为鉴别器。

一个特定的通道关注模块:该模块利用通道相互依赖性动态调整图像深度表示中的通道特征。

实现了:信道注意策略有利于提高生成的隐写图像的质量和消息提取的准确性。为了解决不可避免的提取错误问题,求助于纠错编码算法,通过在原始信息中加入冗余奇偶校验信息,可以准确地从噪声干扰中恢复原始信息。

与ABDH中的空间注意模型试图寻找图像的合适区域来隐藏数据不同,本文关注的是特征图中每个通道的重要性。在该方法中,有效载荷以融合多通道特征映射的方式嵌入。由于不同渠道中有意义的特征的数量不同,因此每个渠道应给予不同程度的关注。否则,无意义的特征可能会转化为噪声,损害隐写质量。引入了一个通道注意单元来明确地建模通道依赖,这使得网络能够将有效载荷集中在更关键和有效的通道特征上。与文献ABDH中的空间注意模型相比,本文通道注意模块更轻量、更有效。

生成器:

L是像素值范围{0~255},P是控制容量的变量。

某些通道可能具有不适合隐藏消息的功能,因此设计了一个轻量级的信道注意模块CA,可以让网络专注于更有利的通道。把它放在卷积块之后,可以增强生成器的嵌入性能。

提取器:

结构基本与生成器相同

总体框架图:

下半部分是信道注意模块示意图:该模块通过计算卷积块的通道权重s,将卷积块得到的特征映射F校准为U

鉴别器:鉴别器目的是最小化Ld,鉴别器给图像进行评分,最终实现给stego打更高的分,cover更低的分数。

通道注意模块:

软注意机制,该机制为特征分配0到1之间的权重,指示注意级别。软注意机制包括空间注意和通道注意,前者允许网络找到合适的图像区域,后者有助于关注特征图中的有利通道。ABDH生成的表示载体图像的注意敏感性掩码,掩码值越大,意味着相应像素的变化导致视觉检测的风险越高。但是论文中认为的注意力不敏感区域没有指向被认为是安全的边缘和纹理区域。由于卷积层本身就有边缘检测提取纹理的作用,因此认为额外的空间注意模型功能有限,所以转向通道注意对图像隐写的影响。

在本文方法中,卷积层是基本的构建块。它将图像转换成多通道特征映射,从而使消息位可以隐藏在这些信道特征中。在处理输入特征映射时,经典卷积运算无法捕捉通道内的整体信息和通道间的依赖关系,导致输出特征映射中出现一些无意义的通道

毫无意义的信道在输出隐写信号中可能进一步转化为严重的噪声,不利于隐实信号的质量和有效载荷的提取。因此,应强调重要的渠道,而压制没有意义的渠道。为此设计了一个注意力模块,根据频道的重要性对其进行调整。以卷积块计算得到的特征映射F为输入,首先利用通道的相互依赖性得到权向量;每个权重反映了每个通道的重要性。然后将权重乘以相应的通道来缩放特征,输出一个重新校准的特征映射U。

(1)用平均池化和最大池化对特征映射F的每个通道中的空间信息进行聚合,得到FavgFmax。对于第m个元素:

这两种池化将每个通道的全局信息压缩成两个标量作为空间特征统计。为了从这些统计数据中得出代表每个通道重要性的权重,对它们执行线性和非线性操作。具体来说使用由两个完全连接层组成的共享网络来传播

(2)然后,对两个输出特征向量进行元素融合相加,然后通过Sigmoid函数将融合后的特征向量变换为信道权向量。即,权向量s由下式得到:

(3)

通过这种方式,通过与较低权重相乘来抑制无用的信道。反之亦然。在修改信道后,U具有更强的隐写生成或消息恢复的表示能力。

损失和训练算法:依旧是基于对抗思想,判别器和二者交替优化。

X:cover S:stego

感知损失:将cover X和stego S提供给预训练的VGG,并最小化它们在几个深度上的特征映射之间的差异。

消息损失:二值交叉熵损失。

Wasserstein距离代替KL散度,载体分布PX与隐写分布PS的Wasserstein-1距离表示为:

生成器的对抗损失:将鉴别器对隐写图像的输出结果作为生成器的对抗损失。

综上,生成器/提取器网络的目标是最小化

鉴别器的目标是努力减小在cover上的预测分数,放大在stego上的预测分数。通过以下损失进行更新:

训练过程就是,生成器/提取器网络和鉴别器网络交替训练,直到损失收敛,其中,G和E共同学习最小化LG,D,D的目标是最小化LD。G迭代一次,D迭代5次。

实验部分:

A.性能评价指标:

(1)图像质量:cover和stego之间的相似性:PSNR、SSIM、感知损失Lp

(2)安全性:抗隐写分析能力,通常通过统计上对隐写分析的不可检测性来经验评估。

(3)提取精度:原始信息与提取信息的相似度

(4)容量:隐藏在载体图像中的数据量

B.数据集:COCO

C.信道注意力单元和鉴别器的消融实验

D.信道注意力单元和鉴别器不同设计的影响

1.不同信道注意单元的影响

2.不同鉴别器的影响

  • 19
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值