线性代数-主变量和特解(麻省理工课程

主变量(Pivot Variables)

主变量 是指在线性方程组的矩阵化简过程中,经过行变换后对应于矩阵每个非零行的第一个非零元素(即“主元”)的变量。主变量通常与方程的解相关,决定了方程的线性解空间的结构。

如何确定主变量:
  1. 通过 高斯消元法行简化阶梯矩阵,每个非零行的第一个非零元素对应的未知数就是主变量。
  2. 主变量一般是与 自由变量(可以取任意值的变量)相对应的,它们通常决定了解空间的基本结构。

自由变量(Free Variables)

自由变量是与主变量不同的变量,它们在矩阵的行简化过程中没有被“固定”,即没有成为某个行的主元。因此,自由变量可以取任意值,并且通过这些自由变量,我们能够表示出解的通式。

特解(Particular Solution)

特解 是线性方程组的一个具体解,通常是指在已知某些条件下求出的一个解。例如,A x = b 中的一个特解就是对 b 求解时得到的一个解。

  • 特解 可以由主变量和自由变量的关系来构造,通常是通过将自由变量赋予某些具体数值来得到特定的解。
  • 对于齐次方程 A x = 0,特解通常是零解或者是通过自由变量得出的非零解。

步骤 1:通过高斯消元法确定主变量

假设我们有一个线性方程组 A x = b,我们将通过高斯消元法将矩阵 A 转化为行简化阶梯矩阵(REF)。这个过程中,我们能够确定哪些变量是主变量,哪些变量是自由变量。

例子:解方程 A x = 0

假设我们有一个矩阵 A
A = ( 1 2 3 2 4 6 1 1 1 ) A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 1 \end{pmatrix} A= 121241361
我们要求解方程 A x = 0,即:
( 1 2 3 2 4 6 1 1 1 ) ( x 1 x 2 x 3 ) = ( 0 0 0 ) \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} 121241361 x1x2x3 = 000

高斯消元法过程
  1. 对第二行减去 2 倍的第一行:
    ( 1 2 3 0 0 0 1 1 1 ) \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} 101201301
  2. 对第三行减去第一行:
    ( 1 2 3 0 0 0 0 − 1 − 2 ) \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & -1 & -2 \end{pmatrix} 100201302
确定主变量与自由变量

行简化阶梯矩阵中,第 1 行的第一个非零元素(1)对应的未知数 x₁ 是主变量;第 3 行的第一个非零元素(-1)对应的未知数 x₂ 也是主变量。

因此,x₁x₂ 是主变量,x₃ 是自由变量。

方程组化简后得到:

( x 1 + 2 x 2 + 3 x 3 = 0 x 2 + 2 x 3 = 0 ) \begin{pmatrix} x_1 + 2x_2 + 3x_3 = 0 \\ x_2 + 2x_3 = 0 \end{pmatrix} (x1+2x2+3x3=0x2+2x3=0)
从第二个方程得:
x 2 = − 2 x 3 x_2 = -2x_3 x2=2x3

代入第一个方程:
x 1 + 2 ( − 2 x 3 ) + 3 x 3 = 0 x_1 + 2(-2x_3) + 3x_3 = 0 x1+2(2x3)+3x3=0
得到:
x 1 = x 3 x_1 = x_3 x1=x3

因此,x₃ 是自由变量,通解为:
x = x 3 ( 1 − 2 1 ) x = x_3 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} x=x3 121

这就是方程 A x = 0 的解,其中 x₃ 是自由变量,表示解空间是一个一维子空间。

步骤 2:构造特解

对于方程 A x = 0,我们已经得到通解:
x = x 3 ( 1 − 2 1 ) \mathbf{x} = x_3 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} x=x3 121
这是一个包含自由变量 x₃ 的解。特解是通过为自由变量赋特定值来构造的具体解。

特解的构造:
  • x₃ = 0 时,得到零解:
    x = ( 0 0 0 ) \mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} x= 000

  • x₃ = 1 时,得到:
    x = ( 1 − 2 1 ) \mathbf{x} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} x= 121

这是该方程的一个特解,它是 A x = 0 方程的一种具体解。

步骤 3:求解非齐次方程的特解

对于非齐次线性方程组 A x = b特解 是指能够满足方程的一个具体解。我们通常通过以下两种方法来求解特解:

  1. 通过高斯消元法:对增广矩阵 [A | b] 进行高斯消元,得到一个行简化阶梯矩阵,然后求解出特解。
  2. 通过通解与齐次解的结合:如果我们知道齐次方程 A x = 0 的通解,那么非齐次方程的通解可以表示为:
    x = x h + x p x = x_{\text{h}} + x_{\text{p}} x=xh+xp
    其中 xₕ 是齐次方程的解(零空间的解),而 xₚ 是非齐次方程的特解。
例子:求解 A x = b

考虑一个增广矩阵 [A | b]
A = ( 1 2 3 2 4 6 1 1 1 ) , b = ( 1 0 1 ) A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} A= 121241361 ,b= 101
增广矩阵为:
[ 1 2 3 1 2 4 6 0 1 1 1 1 ] \left[ \begin{array}{ccc|c} 1 & 2 & 3 & 1 \\ 2 & 4 & 6 & 0 \\ 1 & 1 & 1 & 1 \end{array} \right] 121241361101
使用高斯消元法,我们得到:
[ 1 2 3 1 0 0 0 − 2 0 − 1 − 2 0 ] \left[ \begin{array}{ccc|c} 1 & 2 & 3 & 1 \\ 0 & 0 & 0 & -2 \\ 0 & -1 & -2 & 0 \end{array} \right] 100201302120

通过回代得到:
x 1 + 2 x 2 + 3 x 3 = 1 (主方程) x_1 + 2x_2 + 3x_3 = 1 \quad \text{(主方程)} x1+2x2+3x3=1(主方程)
由此,我们可以得到特解。

总结

  • 主变量 是通过行简化阶梯矩阵(REF)确定的变量,它们与解空间的结构紧密相关。
  • 自由变量 是在行简化过程中没有被固定的变量,可以取任意值,决定了解空间的自由度。
  • 特解 是通过为自由变量赋特定值来得到的具体解,通常是齐次方程的零解或非齐次方程的一个特定解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值