主变量(Pivot Variables)
主变量 是指在线性方程组的矩阵化简过程中,经过行变换后对应于矩阵每个非零行的第一个非零元素(即“主元”)的变量。主变量通常与方程的解相关,决定了方程的线性解空间的结构。
如何确定主变量:
- 通过 高斯消元法 或 行简化阶梯矩阵,每个非零行的第一个非零元素对应的未知数就是主变量。
- 主变量一般是与 自由变量(可以取任意值的变量)相对应的,它们通常决定了解空间的基本结构。
自由变量(Free Variables)
自由变量是与主变量不同的变量,它们在矩阵的行简化过程中没有被“固定”,即没有成为某个行的主元。因此,自由变量可以取任意值,并且通过这些自由变量,我们能够表示出解的通式。
特解(Particular Solution)
特解 是线性方程组的一个具体解,通常是指在已知某些条件下求出的一个解。例如,A x = b 中的一个特解就是对 b 求解时得到的一个解。
- 特解 可以由主变量和自由变量的关系来构造,通常是通过将自由变量赋予某些具体数值来得到特定的解。
- 对于齐次方程 A x = 0,特解通常是零解或者是通过自由变量得出的非零解。
步骤 1:通过高斯消元法确定主变量
假设我们有一个线性方程组 A x = b,我们将通过高斯消元法将矩阵 A 转化为行简化阶梯矩阵(REF)。这个过程中,我们能够确定哪些变量是主变量,哪些变量是自由变量。
例子:解方程 A x = 0
假设我们有一个矩阵 A:
A
=
(
1
2
3
2
4
6
1
1
1
)
A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 1 \end{pmatrix}
A=
121241361
我们要求解方程 A x = 0,即:
(
1
2
3
2
4
6
1
1
1
)
(
x
1
x
2
x
3
)
=
(
0
0
0
)
\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
121241361
x1x2x3
=
000
高斯消元法过程
- 对第二行减去 2 倍的第一行:
( 1 2 3 0 0 0 1 1 1 ) \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} 101201301 - 对第三行减去第一行:
( 1 2 3 0 0 0 0 − 1 − 2 ) \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & -1 & -2 \end{pmatrix} 10020−130−2
确定主变量与自由变量
行简化阶梯矩阵中,第 1 行的第一个非零元素(1)对应的未知数 x₁ 是主变量;第 3 行的第一个非零元素(-1)对应的未知数 x₂ 也是主变量。
因此,x₁ 和 x₂ 是主变量,x₃ 是自由变量。
方程组化简后得到:
(
x
1
+
2
x
2
+
3
x
3
=
0
x
2
+
2
x
3
=
0
)
\begin{pmatrix} x_1 + 2x_2 + 3x_3 = 0 \\ x_2 + 2x_3 = 0 \end{pmatrix}
(x1+2x2+3x3=0x2+2x3=0)
从第二个方程得:
x
2
=
−
2
x
3
x_2 = -2x_3
x2=−2x3
代入第一个方程:
x
1
+
2
(
−
2
x
3
)
+
3
x
3
=
0
x_1 + 2(-2x_3) + 3x_3 = 0
x1+2(−2x3)+3x3=0
得到:
x
1
=
x
3
x_1 = x_3
x1=x3
因此,x₃ 是自由变量,通解为:
x
=
x
3
(
1
−
2
1
)
x = x_3 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}
x=x3
1−21
这就是方程 A x = 0 的解,其中 x₃ 是自由变量,表示解空间是一个一维子空间。
步骤 2:构造特解
对于方程 A x = 0,我们已经得到通解:
x
=
x
3
(
1
−
2
1
)
\mathbf{x} = x_3 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}
x=x3
1−21
这是一个包含自由变量 x₃ 的解。特解是通过为自由变量赋特定值来构造的具体解。
特解的构造:
-
当 x₃ = 0 时,得到零解:
x = ( 0 0 0 ) \mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} x= 000 -
当 x₃ = 1 时,得到:
x = ( 1 − 2 1 ) \mathbf{x} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} x= 1−21
这是该方程的一个特解,它是 A x = 0 方程的一种具体解。
步骤 3:求解非齐次方程的特解
对于非齐次线性方程组 A x = b,特解 是指能够满足方程的一个具体解。我们通常通过以下两种方法来求解特解:
- 通过高斯消元法:对增广矩阵 [A | b] 进行高斯消元,得到一个行简化阶梯矩阵,然后求解出特解。
- 通过通解与齐次解的结合:如果我们知道齐次方程 A x = 0 的通解,那么非齐次方程的通解可以表示为:
x = x h + x p x = x_{\text{h}} + x_{\text{p}} x=xh+xp
其中 xₕ 是齐次方程的解(零空间的解),而 xₚ 是非齐次方程的特解。
例子:求解 A x = b
考虑一个增广矩阵 [A | b]:
A
=
(
1
2
3
2
4
6
1
1
1
)
,
b
=
(
1
0
1
)
A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}
A=
121241361
,b=
101
增广矩阵为:
[
1
2
3
1
2
4
6
0
1
1
1
1
]
\left[ \begin{array}{ccc|c} 1 & 2 & 3 & 1 \\ 2 & 4 & 6 & 0 \\ 1 & 1 & 1 & 1 \end{array} \right]
121241361101
使用高斯消元法,我们得到:
[
1
2
3
1
0
0
0
−
2
0
−
1
−
2
0
]
\left[ \begin{array}{ccc|c} 1 & 2 & 3 & 1 \\ 0 & 0 & 0 & -2 \\ 0 & -1 & -2 & 0 \end{array} \right]
10020−130−21−20
通过回代得到:
x
1
+
2
x
2
+
3
x
3
=
1
(主方程)
x_1 + 2x_2 + 3x_3 = 1 \quad \text{(主方程)}
x1+2x2+3x3=1(主方程)
由此,我们可以得到特解。
总结
- 主变量 是通过行简化阶梯矩阵(REF)确定的变量,它们与解空间的结构紧密相关。
- 自由变量 是在行简化过程中没有被固定的变量,可以取任意值,决定了解空间的自由度。
- 特解 是通过为自由变量赋特定值来得到的具体解,通常是齐次方程的零解或非齐次方程的一个特定解。