1、引言
农作物病害的精准检测与识别是现代农业智能化和信息化发展的关键技术之一。传统方法依赖人工经验和简单的图像处理技术,存在主观性强、效率低、泛化能力差等弊端。随着深度学习技术的快速发展,卷积神经网络(Convolutional
Neural Networks,
CNN)在农作物病害检测与识别领域展现出卓越性能。本文从CNN模型结构优化与应用的角度出发,结合其发展历程,对基于深度学习的农作物病害检测与识别方法进行了系统性综述。
具体而言,本文从以下几个方面展开讨论:
- 基于公开数据集和自建数据集的分类识别 :对比分析了不同数据集对模型性能的影响,指出复杂背景下的数据集对模型的泛化能力提出了更高要求。
- 目标检测算法的分类与优化 :详细探讨了双阶段目标检测算法(如Faster R-CNN)和单阶段目标检测算法(如YOLO、SSD)在农作物病害检测中的应用特点。前者精度较高但实时性较差,后者速度较快但复杂背景下的小目标检测能力有限。
- 病害严重程度评估 :国内外研究在大田环境下的病害评估模型精度仍有待提升,尤其是在多尺度、多光照条件下的表现不佳。
当前存在的主要问题包括:
- 公开数据集上的高