yolov8 bytetrack onnx模型推理

原文:yolov8 bytetrack onnx模型推理 - 知乎 (zhihu.com)

一、pt模型转onnx

from ultralytics import YOLO

# Load a model
model = YOLO('weights/yolov8s.pt')  # load an official model
# model = YOLO('path/to/best.pt')  # load a custom trained

# Export the model
model.export(format='onnx')

二、模型预测

import onnxruntime as rt
import numpy as np
import cv2
import matplotlib.pyplot as plt

from utils.visualize import plot_tracking
from tracker.byte_tracker import BYTETracker
from tracking_utils.timer import Timer

CLASSES = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
           'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
           'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
           'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
           'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
           'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
           'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
           'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
           'hair drier', 'toothbrush']


def nms(pred, conf_thres, iou_thres):
    conf = pred[..., 4] > conf_thres
    box = pred[conf == True]
    cls_conf = box[..., 5:]
    cls = []
    for i in range(len(cls_conf)):
        cls.append(int(np.argmax(cls_conf[i])))
    total_cls = list(set(cls))
    output_box = []
    for i in range(len(total_cls)):
        clss = total_cls[i]
        cls_box = []
        for j in range(len(cls)):
            if cls[j] == clss:
                box[j][5] = clss
                cls_box.append(box[j][:6])
        cls_box = np.array(cls_box)
        box_conf = cls_box[..., 4]
        box_conf_sort = np.argsort(box_conf)
        max_conf_box = cls_box[box_conf_sort[len(box_conf) - 1]]
        output_box.append(max_conf_box)
        cls_box = np.delete(cls_box, 0, 0)
        while len(cls_box) > 0:
            max_conf_box = output_box[len(output_box) - 1]
            del_index = []
            for j in range(len(cls_box)):
                current_box = cls_box[j]
                interArea = getInter(max_conf_box, current_box)
                iou = getIou(max_conf_box, current_box, interArea)
                if iou > iou_thres:
                    del_index.append(j)
            cls_box = np.delete(cls_box, del_index, 0)
            if len(cls_box) > 0:
                output_box.append(cls_box[0])
                cls_box = np.delete(cls_box, 0, 0)
    return output_box


def getIou(box1, box2, inter_area):
    box1_area = box1[2] * box1[3]
    box2_area = box2[2] * box2[3]
    union = box1_area + box2_area - inter_area
    iou = inter_area / union
    return iou


def getInter(box1, box2):
    box1_x1, box1_y1, box1_x2, box1_y2 = box1[0] - box1[2] / 2, box1[1] - box1[3] / 2, \
                                         box1[0] + box1[2] / 2, box1[1] + box1[3] / 2
    box2_x1, box2_y1, box2_x2, box2_y2 = box2[0] - box2[2] / 2, box2[1] - box1[3] / 2, \
                                         box2[0] + box2[2] / 2, box2[1] + box2[3] / 2
    if box1_x1 > box2_x2 or box1_x2 < box2_x1:
        return 0
    if box1_y1 > box2_y2 or box1_y2 < box2_y1:
        return 0
    x_list = [box1_x1, box1_x2, box2_x1, box2_x2]
    x_list = np.sort(x_list)
    x_inter = x_list[2] - x_list[1]
    y_list = [box1_y1, box1_y2, box2_y1, box2_y2]
    y_list = np.sort(y_list)
    y_inter = y_list[2] - y_list[1]
    inter = x_inter * y_inter
    return inter


def draw(img, xscale, yscale, pred):
    # img_ = img.copy()
    if len(pred):
        for detect in pred:
            box = [int((detect[0] - detect[2] / 2) * xscale), int((detect[1] - detect[3] / 2) * yscale),
                   int((detect[0] + detect[2] / 2) * xscale), int((detect[1] + detect[3] / 2) * yscale)]
            cv2.rectangle(img, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 1)
            font = cv2.FONT_HERSHEY_SCRIPT_SIMPLEX

            cv2.putText(img, 'class: {}, conf: {:.2f}'.format( CLASSES[int(detect[5])], detect[4]), (box[0], box[1]),
                        font, 0.7, (255, 0, 0), 2)
    return img


if __name__ == '__main__':
    height, width = 640, 640

    cap = cv2.VideoCapture('../../demo/test_person.mp4')
    while True:
        # t0 = time.time()
        # if frame_id % 20 == 0:
        #     logger.info('Processing frame {} ({:.2f} fps)'.format(frame_id, 1. / max(1e-5, timer.average_time)))
        ret_val, frame = cap.read()
        if ret_val:

            # img0 = cv2.imread('test.jpg')
            img0 = frame
            x_scale = img0.shape[1] / width
            y_scale = img0.shape[0] / height
            img = img0 / 255.
            img = cv2.resize(img, (width, height))
            img = np.transpose(img, (2, 0, 1))
            data = np.expand_dims(img, axis=0)
            print(data.shape)
            sess = rt.InferenceSession('weights/yolov8n.onnx')
            input_name = sess.get_inputs()[0].name
            label_name = sess.get_outputs()[0].name

            print(input_name, label_name)
            # print(sess.run([label_name], {input_name: data.astype(np.float32)}))
            pred = sess.run([label_name], {input_name: data.astype(np.float32)})[0]
            # print(pred.shape)  # (1, 84, 8400)
            pred = np.squeeze(pred)
            pred = np.transpose(pred, (1, 0))
            pred_class = pred[..., 4:]
            # print(pred_class)
            pred_conf = np.max(pred_class, axis=-1)
            pred = np.insert(pred, 4, pred_conf, axis=-1)
            result = nms(pred, 0.3, 0.45)

            # print(result[0].shape)

            # bboxes = []
            # scores = []
            #
            # # print(result)
            #
            # for detect in result:
            #     box = [int((detect[0] - detect[2] / 2) * x_scale), int((detect[1] - detect[3] / 2) * y_scale),
            #            int((detect[0] + detect[2] / 2) * x_scale), int((detect[1] + detect[3] / 2) * y_scale)]
            #
            #     bboxes.append(box)
            #     score = detect[4]
            #     scores.append(score)


            # print(result)
            ret_img = draw(img0, x_scale, y_scale, result)
            # ret_img = ret_img[:, :, ::-1]
            # plt.imshow(ret_img)
            # plt.show()

            cv2.imshow("frame", ret_img)

            # vid_writer.write(online_im)
            ch = cv2.waitKey(1)
            if ch == 27 or ch == ord("q") or ch == ord("Q"):
                break


            # online_targets = tracker.update(bboxes, scores)
            # online_tlwhs = []
            # online_ids = []
            # online_scores = []
            # for i, t in enumerate(online_targets):
            #     # tlwh = t.tlwh
            #     tlwh = t.tlwh_yolox
            #     tid = t.track_id
            #     # vertical = tlwh[2] / tlwh[3] > args.aspect_ratio_thresh
            #     # if tlwh[2] * tlwh[3] > args.min_box_area and not vertical:
            #     if tlwh[2] * tlwh[3] > args.min_box_area:
            #         online_tlwhs.append(tlwh)
            #         online_ids.append(tid)
            #         online_scores.append(t.score)
            #         results.append(
            #             f"{frame_id},{tid},{tlwh[0]:.2f},{tlwh[1]:.2f},{tlwh[2]:.2f},{tlwh[3]:.2f},{t.score:.2f},-1,-1,-1\n"
            #         )
            # t1 = time.time()
            # time_ = (t1 - t0) * 1000
            #
            # online_im = plot_tracking(frame, online_tlwhs, online_ids, frame_id=frame_id + 1,
            #                           fps=1000. / time_)
            #
            # cv2.imshow("frame", online_im)
            #
            # # vid_writer.write(online_im)
            # ch = cv2.waitKey(1)
            # if ch == 27 or ch == ord("q") or ch == ord("Q"):
            #     break
        else:
            break

        # frame_id += 1

视频见原文。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值