n个砖块排成一排,从左到右编号依次为 1∼n。
每个砖块要么是黑色的,要么是白色的。
现在你可以进行以下操作若干次(可以是 0 次):
选择两个相邻的砖块,反转它们的颜色。(黑变白,白变黑)
你的目标是通过不超过 3n次操作,将所有砖块的颜色变得一致。
输入格式
第一行包含整数 T,表示共有 T 组测试数据。
每组数据第一行包含一个整数 n。
第二行包含一个长度为 n的字符串 s。其中的每个字符都是 W
或 B
,如果第 i个字符是 W
,则表示第 i 号砖块是白色的,如果第 i 个字符是 B
,则表示第 i个砖块是黑色的。
输出格式
每组数据,如果无解则输出一行 −1。
否则,首先输出一行 k,表示需要的操作次数。
如果 k>0,则还需再输出一行 k个整数,p1,p2,…,pk。其中 pi 表示第 i次操作,选中的砖块为 pi和 pi+1号砖块。
如果方案不唯一,则输出任意合理方案即可。
数据范围
1≤T≤10
2≤n≤200
输入样例:
4
8
BWWWWWWB
4
BWBB
5
WWWWW
3
BWB
输出样例:
3
6 2 4
-1
0
2
2 1
#include<stdio.h>
#include<string.h>
#define N 210
int n;
char s[N];
int check(char c) {
int res[N];
char ss[N];
int count = 0;
for (int i = 0; i < n; i++)
ss[i] = s[i];
memset(res, 0, sizeof(res));
for (int i = 0; i + 1 < n; i++) {
if (ss[i] != c) {
if (ss[i] == 'W')
ss[i] = 'B';
else
ss[i] = 'W';
if (ss[i + 1] == 'W')
ss[i + 1] = 'B';
else
ss[i + 1] = 'W';
res[i] = i + 1;
}
}
if (ss[n - 1] != c)
return 0;
int len = 0;
for (int i = 0; i < n; i++) {
if (res[i] != 0)
len++;
}
printf("%d\n", len);
for (int i = 0; i < n; i++) {
if (res[i] != 0) {
printf("%d ", res[i]);
}
}
if (len)
printf("\n");
return 1;
}
int main() {
int T;
scanf("%d", &T);
while (T--) {
scanf("%d", &n);
scanf("%s", s);
getchar();
if (!check('B') && !check('W'))
printf("-1\n");
}
return 0;
}