dify的简单介绍和使用

dify的简单介绍和使用

1.初次进入dify需自行配置模型

2025-03-17-09-59-29-image

2.dify提供大量开箱即用的模板应用
3.如果在搜索页没有找到合适的模板,也可以自己创建应用

2025-03-17-10-15-37-image

4.dify提供了5种类型的应用,前三种开箱即用,dify预先配置了基础框架。

2025-03-17-10-20-31-image

  • 聊天助手,简单配置即可构建基于LLM(Large Language Model)的对话机器人

  • agent是能够分解任务,推理思考,调用工具的对话式智能体应用。

  • ChatFlow可以完全由我们自主定义的应用类型,我们可以将chatflow看成是agent的高阶diy版本,他基本可以满足我们任意业务流程编排

  • 工作流类似没有记忆的chatflow,负责处理单轮复杂任务

5.创建工作流
  1. 添加输入节点

    2025-03-17-10-32-17-image

  2. 添加一个用于处理输入内容大模型节点,可以选择不同的模型并设置不同的参数

2025-03-17-10-32-36-image

设置大模型的System prompt(系统提示),定义节点的意图,用来约束大模型的行为。

2025-03-17-10-37-18-image

将用户输入的内容引入到User Prompt

2025-03-17-10-39-06-image

  1. 添加结束节点

结束节点:定义workflow流程的结束结果类型,将大模型的输出内容返回给用户

2025-03-17-10-41-17-image

  1. 运行调试

点击预览查看效果,进行调试

2025-03-17-11-18-23-image

点击发布->发布更新,保存当前工作流

2025-03-17-11-20-05-image

点击发布->运行,运行当前工作流。另外,在探索页面的工作区中也可以找到当前工作流的运行界面。

2025-03-17-11-20-36-image

6.其他面板功能介绍

2025-03-17-11-01-21-image

记忆:可以引入历史轮次的相关对话内容,增强大模型思考的上下文

视觉:开启对附件中图片的理解

7.知识检索节点和知识库

知识检索节点

2025-03-17-11-04-13-image

知识检索会根据输入从知识库匹配最相关的数个内容片段,为大模型引入这些片段,从而可以有效地抑制大模型的幻觉问题,令回答更具参考性

在节点设置面板,可以添加知识库

2025-03-17-14-31-11-image

知识库的创建与调优

知识库提供了RAG Pipeline的整套工程能力,对文本进行指定的切分清洗和向量化处理。同时,我们可以定义Pipeline的具体规则,调整合适的相似度阈值(Score阈值)最相似分片(Top K)的数量。

  • RAG pipeline 是指检索增强生成(Retrieval-Augmented Generation)管道,它是一种结合了检索和生成模型能力的创新方法,用于在自然语言处理任务中实现更精准、更相关的上下文响应。

  • Top k 指的是一种基于排序的筛选机制,用于从大量的候选结果中提取出最相关的前 k 个元素。

  • Score 阈值是一种基于置信度(0=<置信度<=1)的过滤机制,用于决定一个样本是否满足特定条件。

  • Embedding模型的核心作用Embedding模型通过将离散数据(如文本、图像)映射到低维连续向量空间,实现了 语义信息的数学表达。

  • Rerank模型是一种用于对初步检索结果进行精细化排序的模型,其主要目的是提升检索结果与用户查询之间的相关性。

2025-03-17-14-41-11-image

可选3种文件格式上传

2025-03-17-14-42-28-image

2025-03-17-14-43-36-image

2025-03-17-14-44-11-image

召回测试中可以对召回效果验证调优

2025-03-17-14-47-39-image

8.代码执行节点

2025-03-17-11-09-32-image

暂时不写,有需要者自行查资料

9.BaaS解决方案

dify还提供了BaaS解决方案,在dify中可以把应用直接以api的形式集成到其他业务系统或者直接开放给用户使用,极大简化了应用的研发流程。

  • BaaS(Backend as a Service,后端即服务)是一种云服务模型,旨在为移动和Web应用提供后端支持。它允许开发人员将应用的后端功能外包给第三方服务提供商,通过API调用即可实现数据存储、用户管理、推送通知等后端功能的集成。

2025-03-17-14-25-21-image

2025-03-17-14-49-49-image


拓展:dify工作流中的变量

2025-03-17-15-34-34-image

sys.query
  • 含义:表示用户输入的查询内容,是用户在与Dify应用交互时提出的问题或指令。

  • 应用场景:在知识检索节点中,sys.query通常被用作查询变量,检索知识库中与用户问题相关的文本内容。例如,当用户询问某个技术问题时,sys.query会将该问题传递到知识检索节点,从知识库中找到最相关的文档或段落。

sys.dialogue_count
  • 含义:表示用户在与Chatflow类型应用交互时的对话轮数。每轮对话后自动计数增加1。

  • 应用场景:可以和条件判断节点搭配出丰富的分支逻辑。例如,到第X轮对话时,可以回顾历史对话并给出分析。

sys.conversation_id
  • 含义:对话框交互会话的唯一标识符,用于将所有相关的消息分组到同一个对话中。

  • 应用场景:确保LLM针对同一个主题和上下文持续对话,保持对话的连贯性和一致性。

sys.user_id
  • 含义:分配给每个应用用户的唯一标识符,用于区分不同的对话用户。

  • 应用场景:在多用户环境下,sys.user_id可以帮助应用识别不同的用户,为每个用户提供个性化的服务和对话体验。

sys.files
  • 含义:表示用户上传至对话框的文件,支持多种文件类型。

  • 应用场景:在需要处理文件内容的场景中,如文档分析、图片识别等,sys.files可以将用户上传的文件传递给相应的处理节点。

sys.app_id
  • 含义:系统会向每个Workflow应用分配一个唯一的标识符,用于区分不同的应用。

  • 应用场景:通过sys.app_id,开发者可以区分并定位不同的Workflow应用,方便管理和维护多个应用。

sys.workflow_id
  • 含义:用于记录当前Workflow应用内所包含的所有节点信息。

  • 应用场景:开发者可以通过sys.workflow_id追踪并记录Workflow内的包含节点信息,便于对工作流的结构和执行流程进行分析和优化。

sys.workflow_run_id
  • 含义:用于记录Workflow应用中的运行情况。

  • 应用场景:通过sys.workflow_run_id,开发者可以追踪应用的历次运行情况,便于监控和调试工作流的执行过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值