随着人工智能技术的飞速发展,大语言模型在语言学习中的应用日益广泛。相较传统的语言学习方式(比如报班、刷题和看外语剧等等),大语言模型在成本投入、学习效率、便捷性和灵活性等方面都有着绝对的优势。
这些模型可以从多个维度帮助语言学习者:
1.提供即时反馈:大语言模型可以对学习者的句子进行语法和语义分析,提供即时纠正和建议,帮助学习者提高语言的准确性。
2.对话练习:学习者可以与模型进行对话练习,模拟真实交流环境,增强口语.
3.词汇扩展:模型可以根据学习者的需求,提供丰富的词汇和表达方式,帮助学习者扩展词汇量。
4.阅读理解:大语言模型可以生成多种难度级别的阅读材料,并根据学习者的理解水平提出问题和解释难点。
5.写作辅助:学习者可以利用大语言模型进行写作练习,模型可以帮助润色文章,纠正语法错误,提供更地道的表达方式。
以下是一些在语言学习领域表现突出的大语言模型汇总。
1. GPT-4
GPT-4(Generative Pre-trained Transformer 4)是OpenAI开发的一种大型语言模型。它基于Transformer架构,通过在大规模文本数据上进行预训练,能够生成高质量的自然语言文本,完成多种语言任务,如翻译、摘要、对话和文本生成。
GPT4对许多公司都开放了接口,导致代理众多,有的收费极其不合理。有条件的话推荐去OpenAI官网使用,如若不方便,也可以通过微软公司旗下的Copilot使用。
2. Google BERT
BERT(Bidirectional Encoder Representations from Transformers)是Google开发的一种预训练语言模型。它采用双向Transformer架构,通过在大规模语料库上进行无监督预训练,捕捉上下文中的深层语义关系。
由Google提出的基于变换器的双向编码器表示技术(Bidirectional Encoder Representations from Transformers,BERT)是用于自然语言处理(NLP)的预训练技术。2018年,雅各布·德夫林和同事创建并发布了BERT。2020年的一项文献调查得出结论:“在一年多的时间里,BERT已经成为NLP实验中无处不在的基线”,有关分析和改进此模型的研究出版物超过150篇。
最初的以英语为主的BERT发布时提供两种类型的预训练模型:(1)BERTBASE模型,一个12层,768维,12个自注意头(self attention head),110M参数的神经网络结构;(2)BERTLARGE模型,一个24层,1024维,16个自注意头,340M参数的神经网络结构。两者的训练语料都是BooksCorpus以及英语维基百科语料,单词量分别是8亿以及25亿。
Google在github上开源了许多训练好的BERT模型,学习者经过简单学习就可以使用。
这里附上两篇教程。
https://www.cnblogs.com/zackstang/p/15387549.html
https://blog.csdn.net/qq_27496129/article/details/137501648
3. Claude 3.5
Claude 3.5是由Anthropic开发的一款人工智能对话模型,是Claude系列的最新版本。以法国启蒙思想家克洛德·阿德里安·赫尔维修命名,Claude 3.5旨在提供更为自然和有效的交互体验。相比前代版本,Claude 3.5在理解上下文、生成更连贯的回答以及处理复杂问题方面有了显著的提升。它在多个领域具备广泛的应用潜力,包括客户服务、内容创作、教育支持和编程辅助等。作为一个高度先进的对话系统,Claude 3.5展现了在语言理解和生成技术上的前沿能力。
4.Gemini1.5
Gemini(前称:Bard)是由Google开发的生成式人工智能聊天机器人。它基于同名的Gemini系列大型语言模型。是应对OpenAI公司开发的ChatGPT的崛起而开发的。2023年3月在部分国家和地区推出,2023年5月扩展到更多国家。2024年2月8日更名为Gemini。
Gemini1.5的架构改进使其能够对大型信息集执行复杂的分析。无论是深入研究阿波罗11号任务的复杂细节或者解析无声电影,Gemini1.5均展示了无与伦比的解决问题的能力。
Gemini1.5Pro在Google先进的TPUv1.5上开发,已在多种数据集上进行了训练,涵盖各个领域,包括多模式和多语言内容。这种广泛的训练基础与基于类人数据的微调相结合,确保Gemini1.5Pro的输出更贴近人类。
(目前Gemini在长文本的处理方面遥遥领先。)
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓