“ 向量化是一切大模型技术的基础,大模型中的一切都是向量。”
在之前的文章曾不止一次的讲过向量,向量作为大模型的基础数据格式,其重要性不言而喻;但大部分人对向量还是没有一个深刻的认识。
所以,今天我们就来讨论一个问题,那就是向量化,大模型的入口。
向量化
向量的概念这里就不解释了,有问题的可以看之前的文章,或者自己去找一下向量,矩阵的内容看看。
先来讨论第一个问题,为什么要向量化?
原因在于计算机无法直接处理非数值性计算,所以的计算都需要转换成数值运算才行;但数值计算的方式有很多,为什么会选择向量作为载体?
原因就在于向量的几个基本特性:
-
第一就是向量便于计算机进行处理;
-
第二就是向量能够表示文本,图像等之间的语义关系
-
第三就是使用矩阵来表示向量,计算效率更高
什么是向量化?
简单来说向量化就是把其它格式的数据转换为向量形式,这里的其它格式包括我们常见的一切格式的数据,文本,图像,视频,音频等等;因此,可以直接把向量化理解为一种数据格式转换的技术。
在大模型中哪些地方需要进行向量化?
简单来说,任何需要输入到大模型的数据都需要向量化;其次,需要记录语义关系的也都需要向量化,比如RAG,向量数据库等。
众所周知,大模型是由一个输入层,一个隐藏层,一个输出层组成;而其中隐藏层包括一个或多个神经网络层。其中,输入层需要做的一件事就是把输入数据向量化,只有这样才能被隐藏层接受和处理。
记住一句话,在大模型中一切都是向量。
那怎么实现向量化?
在不同的技术阶段,向量化的方式也有所不同;以文本向量化来说,文本向量化一般有三种方式:
-
one-hot编码
-
词汇映射(Word2Vec)
-
Word Embedding(广义上Word2Vec也属于Word Embedding的一种)
词嵌入是文本向量化的一种常见方式,一般情况下会将一个单词映射到一个高维向量中来代表这个词,这就是词向量。
而文本嵌入层的作用就是,将文本中词汇的数字表示转变为高维的向量表示,旨在高维空间捕捉词汇间的关系。
Embedding 可以说是目前比较常见的一种向量化的方式,各大模型服务商,以及开源社区都发布了大量的Embedding模型来提供给用户使用;而Embedding嵌入就是一种经过专门训练的用来向量化数据的神经网络模型。
只不过Embedding嵌入模型经过矩阵算法的优化,比传统的向量化方式效率更高,效果更好。
https://cloud.tencent.com/developer/article/1749306
而且,Embedding的应用非常广泛,其不仅是大模型的基础技术之一;事实上,Embedding也是大模型技术的应用场景之一。比如在图像搜索,推荐系统,广告,搜索等业务中,Embedding都发挥着重要的作用。
了解了文本向量化的工具之后,那么思考一下图像和视频是怎么实现向量化的?
在图像向量化的过程中,卷积神经网络和自编码器都是用于图像向量化的有效工具;前者通过训练提取图像特征并转换为向量;后者则学习图像的压缩编码以生成低维向量表示。
-
卷积神经网络(CNN):通过训练卷积神经网络模型,我们可以从原始图像数据中提取特征,并将其表示为向量。例如,使用预训练的模型(如VGG16, ResNet)的特定层作为特征提取器。
-
自编码器(Autoencoders):这是一种无监督的神经网络,用于学习输入数据的有效编码。在图像向量化中,自编码器可以学习从图像到低维向量的映射
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈