“FinRL-DeepSeek: LLM-Infused Risk-Sensitive Reinforcement Learning for Trading Agents”
自动化交易代理利用强化学习(RL)越来越普遍,但常忽略两个方面:一是整合如金融新闻等另类数据源;二是风险管理。本文提出一种新型混合RL-LLM交易代理,结合金融新闻洞察于行动和风险层面。使用FNSPID数据集的金融新闻数据以及DeepSeek V3、Qwen 2.5和Llama 3.3语言模型在纳斯达克-100指数基准上进行回测。
论文地址:https://arxiv.org/pdf/2502.07393v1
【 扫描文末二维码加入星球获取论文、源码 】
摘要
本文提出了一种结合强化学习和大型语言模型(LLM)的风险敏感交易代理。扩展了条件风险价值(Conditional Value-at-Risk Proximal)的近端策略优化(CPPO)算法,增加了由LLM生成的风险评估和交易建议信号。在纳斯达克100指数基准上进行回测,使用FNSPID数据集的金融新闻数据。应用DeepSeek V3、Qwen 2.5和Llama 3.3语言模型。
简介
自动交易代理利用强化学习(RL),但常忽视金融新闻等替代数据源的整合和风险管理。本文提出一种新型混合RL-LLM交易代理,结合金融新闻洞察于行动和风险层面。主要贡献是引入基于LLM的风险评估分数和交易建议,展示LLM在新闻特征提取中的潜力,超越标准情感分析,通过精心设计的提示实现。
相关工作
LLM增强的RL代理研究逐渐增多,当前方法相对简单。FinGPT将RL应用于LLM的股票价格训练,复杂度高于本研究,后者利用现有LLM API。其他混合RL-LLM方法如FinCon通过多智能体协作机制进行复杂信息提炼,本研究仅使用简单提示。与“纯LLM”代理不同,后者仅依赖LLM推荐。
数据和LLM提示
使用FNSPID数据集,包含1999-2023年间1570万条时间对齐的金融新闻记录。为降低LLM API成本,随机选择每只股票每天一篇代表性新闻,减少至200万条记录。
利用LLM(DeepSeek V3, Qwen 2.5 72B, Llama 3.3 70B)提取股票推荐和风险评估。我们使用以下提示提取股票建议和风险评估:
股票推荐提示
”You are a financial expert with stock recom-mendation experience. Based on a specific stock,score for range from 1 to 5, where 1 is negative, 2is somewhat negative, 3 is neutral, 4 is somewhatpositive, 5 is positive”
风险评估提示
”You are a financial expert specializing in risk as-sessment for stock recommendations. Based ona specific stock, provide a risk score from 1 to5, where: 1 indicates very low risk, 2 indicateslow risk, 3 indicates moderate risk (default if thenews lacks any clear indication of risk), 4 indi-cates high risk, and 5 indicates very high risk.”
交易算法
仅基于价格数据的强化学习代理
近端策略优化(PPO)
PPO目标通过剪切概率比率确保稳定的策略更新:
关键要素:
-
r_t(θ):新旧策略的概率比率。
-
A_t:时间t的优势估计。
-
ϵ:限制策略大幅更新的剪切参数。
条件风险价值-近端策略优化(CONDITIONAL VALUE AT RISK-PROXIMAL POLICY OPTIMIZATION, CVAR-PPO)
CVaR-PPO在PPO基础上引入风险约束,惩罚高损失轨迹。目标函数包括PPO目标和CVaR损失,CVaR损失计算公式为:
关键参数:
-
L_{PPO}(theta):PPO目标。
-
D(pi_theta):轨迹回报。
-
eta:CVaR阈值。
-
(eta - D(pi_theta))^+:超出阈值的CVaR损失。
-
lambda:强制约束的拉格朗日乘子。
-
alpha:CVaR置信水平(如0.05表示最坏5%)。
-
beta:辅助惩罚参数。
该方法首次应用于股票交易。
LLM-infused PPO
LLM-infused PPO通过FNSPID数据集计算股票推荐分数Sf,影响交易行为。交易行为公式
-
Sf > 1:正面推荐,放大动作;
-
Sf < 1:负面推荐,减弱动作;
-
Sf = 1:不变。
Sf选择接近1以保持算法稳定性。
-
Sf = 1.1:股票分数5且a t > 0或分数1且a t < 0。
-
Sf = 1.05:股票分数4且a t > 0或分数2且a t < 0。
-
Sf = 0.95:股票分数4且a t < 0或分数2且a t > 0。
-
Sf = 0.9:股票分数5且a t < 0或分数1且a t > 0。
LLM-infused CVaR-PPO(CPPO)
使用FNSPID数据集的金融新闻生成每只股票的风险评分Rif,评分接近1以保持算法稳定。
风险评分分类:
-
Rif = 1.1表示极高风险评分 5;
-
Rif = 1.05表示高风险评分 4;
-
Rif = 1表示中等风险评分 3;
-
Rif = 0.95表示低风险评分 2;
-
Rif = 0.9表示极低风险评分 1;
聚合风险评分定义为:
其中w i为股票i在投资组合中的权重,且∑w i = 1。
这些评分调整CVaR-PPO中的轨迹收益,以反映市场风险,调整后的收益为
金融新闻通过 Sf 和 Rf 影响交易行为。
结果
早期停止:400-500k训练步数
在这些测试中,我们使用10%的LLM输注,这意味着原PPO和CPPO达到10%
图1
-
训练周期:2019 - 2022
-
训练迭代:500k步(25个epoch,每个20k步)
-
交易周期:2023
图1与Qwen 2.5的初步结果表明,整合LLM股票推荐在累积收益方面持续提高PPO。然而,到目前为止,它还不足以击败纳斯达克100指数。
图2
-
训练周期:2013 - 2018
-
训练迭代:400k步(20个epoch,每个20k步)
-
交易周期:2019-2023
对于PPO和cppo进行较长的训练周期(6年vs. 3年),结果显示有显著改善。然而,PPO仍然太不稳定。在其他条件相同的情况下,DeepSeek V3比羊驼3.3稍微好一点。在这个测试中,使用LLM总是会降低性能。
在训练了200万步之后
图3
图4
在这两次运行中(RL代理是随机的),PPO和CPPO-DeepSeek优于其他方法,包括纳斯达克100基准。PPO似乎在牛市中表现更好,而CPPO-DeepSeek在熊市中表现更好,过渡时间是在2021年底,在乌克兰战争和随后的危机之前。
LLM注射强度的影响
我们将LLM注入强度参数从10%调整到0.1%(即LLM扰动参数从0.9 - 1.1变化到0.999 - 1.001)。
图5
对于PPO-DeepSeek来说,更强的LLM注入大部分会降低性能,即使是微小的(0.1%)扰动。
图6
对于CPPO-DeepSeek,更强的LLM注入可以提高性能
总结
本文提出LLM-infused RL代理用于算法交易,结合股票交易建议和新闻风险评估。
未来工作方向:
-
优化RAM使用:长时间训练需更多内存,提升内存效率以实现可扩展性。
-
缩短决策时间:快速反应市场变化以提高交易表现。
-
改善新闻信号质量:提升FNSPID数据集中的新闻信号质量以增强市场表现。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈