二维离散傅里叶变换的平移性质证明

0 前言

本文记录了笔者数字图像处理作业的一道二维离散傅里叶变换的平移性质的证明题,希望能够帮助到读者。

1 证明

f ( x , y ) e j 2 π ( u 0 x M + v 0 y N ) < = > F ( u − u 0 , v − v 0 ) f ( x − x 0 , y − y 0 ) < = > F ( u , v ) e − j 2 π ( u 0 x M + u 0 y N ) \begin{aligned}f(x,y)e^{j2\pi(\frac{u_0x}M+\frac{v_0y}N)}&<=>F(u-u_0,v-v_0)\\f(x-x_0,y-y_0)&<=>F(u,v)e^{-j2\pi(\frac{u_0x}M+\frac{u_0y}N)}\end{aligned} f(x,y)ej2π(Mu0x+Nv0y)f(xx0,yy0)<=>F(uu0,vv0)<=>F(u,v)ej2π(Mu0x+Nu0y)
也就是说,用指数项乘以 f ( x , y ) f(x,y) f(x,y) 将使DFT的原点移到 ( u 0 , v 0 ) (u_0,v_0) (u0,v0);反之,用负指数乘以 F ( u , v ) F(u,v) F(u,v) 将使 f ( x , y ) f(x,y) f(x,y) 的原点平移到点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)。即图像平移不影响幅度谱,但影响相位谱。

1.1 空间位移

f ( x − x 0 , y − y 0 ) < = > F ( u ′ , v ′ ) f(x-x_0,y-y_0)<=>F(u^{\prime},v^{\prime}) f(xx0,yy0)<=>F(u,v)

F ( u ′ , v ′ ) = 1 M N ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x − x 0 , y − y 0 ) e − j 2 π ( u x M + v y N ) F(u^{\prime},v^{\prime})=\frac1{\sqrt{MN}}\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x-x_0,y-y_0)e^{-j2\pi(\frac{\mathrm{u}x}M+\frac{\mathrm{v}y}N)} F(u,v)=MN 1x=0M1y=0N1f(xx0,yy0)ej2π(Mux+Nvy)

x − x 0 = a , y − y 0 = b x-x_0 = a,y-y_0=b xx0=a,yy0=b

F ( u ′ , v ′ ) = 1 M N ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( a , b ) e − j 2 π ( u ( a + x 0 ) M + ν ( b + y 0 ) N ) = e − j 2 π ( u x 0 M + v y 0 N ) ⋅ 1 M N ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( a , b ) e − j 2 π ( u a M + v b N ) = e − j 2 π ( u x 0 M + v y 0 N ) F ( u , v ) \begin{aligned} F(u',v')& \begin{aligned}=\frac{1}{\sqrt{MN}}\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(a,b)e^{-j2\pi(\frac{u(a+x_0)}M+\frac{\nu(b+y_0)}N)}\end{aligned} \\ &=e^{-j2\pi(\frac{ux_0}M+\frac{vy_0}N)}\cdot\frac1{\sqrt{MN}}\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(a,b)e^{-j2\pi(\frac{ua}M+\frac{vb}N)} \\ &=e^{-j2\pi(\frac{ux_{0}}{M}+\frac{vy_{0}}{N})}F(u,v) \end{aligned} F(u,v)=MN 1x=0M1y=0N1f(a,b)ej2π(Mu(a+x0)+Nν(b+y0))=ej2π(Mux0+Nvy0)MN 1x=0M1y=0N1f(a,b)ej2π(Mua+Nvb)=ej2π(Mux0+Nvy0)F(u,v)

f ( x − x 0 , y − y 0 ) < = > F ( u , v ) ⋅ e − j 2 π ( u 0 x M + u 0 y N ) f(x-x_0,y-y_0)<=>F(u,v)\cdot e^{-j2\pi(\frac{u_0x}M+\frac{u_0y}N)} f(xx0,yy0)<=>F(u,v)ej2π(Mu0x+Nu0y)

1.2 频率位移

F ( u − u 0 , v − v 0 ) < = > f ( x ′ , y ′ ) F(u-u_0,v-v_0)<=>f(x^{\prime},y^{\prime}) F(uu0,vv0)<=>f(x,y)
f ( x ′ , y ′ ) = 1 M N ∑ x = 0 M − 1 ∑ y = 0 N − 1 F ( u − u 0 , v − v 0 ) e j 2 π ( u x M + v y N ) f(x^{\prime},y^{\prime})=\frac1{\sqrt{MN}}\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}F(u-u_0,v-v_0)e^{j2\pi(\frac{\mathrm{u}x}M+\frac{\mathrm{v}y}N)} f(x,y)=MN 1x=0M1y=0N1F(uu0,vv0)ej2π(Mux+Nvy)
u − u 0 = a , v − v 0 = b u-u_0=a,v-v_0=b uu0=a,vv0=b

f ( x ′ , y ′ ) = 1 M N ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( a , b ) e j 2 π ( ( a + u 0 ) x M + ( b + v 0 ) y N ) = e j 2 π ( u x 0 M + ν y 0 N ) ⋅ 1 M N ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( a , b ) e j 2 π ( a x M + b y N ) = e j 2 π ( u x 0 M + v y 0 N ) f ( x , y ) \begin{aligned} f(x^{\prime},y^{\prime})& =\frac1{\sqrt{MN}}\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(a,b)e^{j2\pi(\frac{(a+u_0)x}M+\frac{(b+v_0)y}N)} \\ &=e^{j2\pi(\frac{ux_0}M+\frac{\nu y_0}N)}\cdot\frac1{\sqrt{MN}}\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(a,b)e^{j2\pi(\frac{ax}M+\frac{by}N)} \\ &=e^{j2\pi(\frac{ux_{0}}{M}+\frac{vy_{0}}{N})}f(x,y) \end{aligned} f(x,y)=MN 1x=0M1y=0N1f(a,b)ej2π(M(a+u0)x+N(b+v0)y)=ej2π(Mux0+Nνy0)MN 1x=0M1y=0N1f(a,b)ej2π(Max+Nby)=ej2π(Mux0+Nvy0)f(x,y)

F ( u − u 0 , v − v 0 ) < = > f ( x , y ) ⋅ e j 2 π ( u 0 x M + u 0 y N ) F(u-u_0,v-v_0)<=>f(x,y)\cdot e^{j2\pi(\frac{u_0x}M+\frac{u_0y}N)} F(uu0,vv0)<=>f(x,y)ej2π(Mu0x+Nu0y)
综上,得证!

2 总结

以上就是笔者要分享的内容了,希望可以帮助到您,倘若大佬发现问题,直接评论区斧正即可,我们下期再见!🌞🌞🌞

  • 5
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
二维离散傅里叶变换(2D DFT)是一种将二维离散信号转换到频域的方法,它在图像处理和信号处理中广泛应用。移位特性是指在进行2D DFT时,对输入信号进行平移操作,会导致频域中的相位谱发生相应的平移。 在MATLAB中,可以使用fft2函数来进行二维离散傅里叶变换。该函数的语法如下: ```matlab Y = fft2(X) ``` 其中,X是输入的二维离散信号,Y是变换后的频域表示。默认情况下,MATLAB会对输入信号进行零填充以满足变换的要求。 对于移位特性,可以通过对输入信号进行平移操作来观察频域中的相位谱平移。具体操作如下: ```matlab % 生成一个二维方波信号 X = zeros(64, 64); X(16:48, 16:48) = 1; % 进行二维离散傅里叶变换 Y = fft2(X); % 对输入信号进行平移操作 X_shifted = circshift(X, [10, 10]); % 进行平移后的二维离散傅里叶变换 Y_shifted = fft2(X_shifted); % 显示原始信号和平移后的信号 subplot(2, 2, 1); imshow(X); title('原始信号'); subplot(2, 2, 2); imshow(abs(Y), []); title('频域表示'); subplot(2, 2, 3); imshow(X_shifted); title('平移后的信号'); subplot(2, 2, 4); imshow(abs(Y_shifted), []); title('平移后的频域表示'); ``` 上述代码中,首先生成一个二维方波信号X,然后进行二维离散傅里叶变换得到频域表示Y。接着对输入信号进行平移操作,生成平移后的信号X_shifted,并进行平移后的二维离散傅里叶变换得到频域表示Y_shifted。最后通过subplot函数将原始信号、频域表示、平移后的信号和平移后的频域表示显示在一个图像窗口中。 希望以上介绍对您有帮助!如果还有其他问题,请随时提问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_a_yang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值