Mini-Omni是清华大学开源的多模态大型语言模型,具备实时语音输入和流式音频输出的能力。
Mini-Omni模型能够一边听、一边说,一边思考,类似于ChatGPT的语言对话模式。
Mini-Omni模型的主要特点是能够直接通过音频模态进行推理,并生成流式输出,而不需要依赖额外的文本到语音(TTS)系统,从而减少了延迟。
Mini-Omni模型的架构在Qwen2-0.5B基础上进行了增强,使用了Whisper-small编码器来有效处理语音输入。
Mini-Omni模型采用了并行文本-音频生成方法,通过批量并行解码生成语音和文本,确保了模型在不同模态间的推理能力不受损害。
Mini-Omni模型还引入了VoiceAssistant-400K数据集,用于对优化语音输出的模型进行微调。
github项目地址:https://github.com/gpt-omni/mini-omni。
一、环境安装
1、python环境
建议安装python版本在3.10以上。
2、pip库安装
pip install torch==2.3.1+cu118 torchvision==0.18.1+cu118 torchaudio==2.3.1 --extra-index-url https://download.pytorch.org/whl/cu118
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
3、模型下载:
git lfs install
git clone https://huggingface.co/gpt-omni/mini-omni
二、功能测试
1、运行测试:
(1)python代码调用测试
import os
import torch
import time
import lightning as L
import soundfile as sf
import whisper
from snac import SNAC
from litgpt import Tokenizer
from tqdm import tqdm
from huggingface_hub import snapshot_download
from lightning.fabric.utilities.load import _lazy_load as lazy_load
from utils.snac_utils import layershift, reconscruct_snac, reconstruct_tensors, get_time_str, get_snac, generate_audio_data
from litgpt.utils import num_parameters
from litgpt.generate.base import generate_AA, generate_ASR, generate_TA, generate_TT, generate_AT, generate_TA_BATCH, next_token_batch
from litgpt.model import GPT, Config
torch.set_printoptions(sci_mode=False)
# Constants Definitions
text_vocabsize = 151936
text_specialtokens = 64
audio_vocabsize = 4096
audio_specialtokens = 64
padded_text_vocabsize = text_vocabsize + text_specialtokens
padded_audio_vocabsize = audio_vocabsize + audio_specialtokens
_eot = text_vocabsize
_pad_t = text_vocabsize + 1
_input_t = text_vocabsize + 2
_answer_t = text_vocabsize + 3
_asr = text_vocabsize + 4
_eoa = audio_vocabsize
_pad_a = audio_vocabsize + 1
_input_a = audio_vocabsize + 2
_answer_a = audio_vocabsize + 3
_split = audio_vocabsize + 4
# Utility Functions
def get_input_ids_TA(text, text_tokenizer):
input_ids_item = [[] for _ in range(8)]
text_tokens = text_tokenizer.encode(text)
for i in range(7):
input_ids_item[i] = [layershift(_pad_a, i)] * (len(text_tokens) + 2) + [
layershift(_answer_a, i)
]
input_ids_item[i] = torch.tensor(input_ids_item[i]).unsqueeze(0)
input_ids_item[-1] = [_input_t] + text_tokens.tolist() + [_eot] + [_answer_t]
input_ids_item[-1] = torch.tensor(input_ids_item[-1]).unsqueeze(0)
return input_ids_item
def get_input_ids_TT(text, text_tokenizer):
input_ids_item = [[] for i in range(8)]
text_tokens = text_tokenizer.encode(text).tolist()
for i in range(7):
input_ids_item[i] = torch.tensor(
[layershift(_pad_a, i)] * (len(text_tokens) + 3)
).unsqueeze(0)
input_ids_item[-1] = [_input_t] + text_tokens + [_eot] + [_answer_t]
input_ids_item[-1] = torch.tensor(input_ids_item[-1]).unsqueeze(0)
return input_ids_item
def get_input_ids_whisper(mel, leng, whispermodel, device,
special_token_a=_answer_a, special_token_t=_answer_t):
with torch.no_grad():
mel = mel.unsqueeze(0).to(device)
audio_feature = whispermodel.embed_audio(mel)[0][:leng]
T = audio_feature.size(0)
input_ids = []
for i in range(7):
input_ids_item = []
input_ids_item.append(layershift(_input_a, i))
input_ids_item += [layershift(_pad_a, i)] * T
input_ids_item += [(layershift(_eoa, i)), layershift(special_token_a, i)]
input_ids.append(torch.tensor(input_ids_item).unsqueeze(0))
input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, special_token_t])
input_ids.append(input_id_T.unsqueeze(0))
return audio_feature.unsqueeze(0), input_ids
def get_input_ids_whisper_ATBatch(mel, leng, whispermodel, device):
with torch.no_grad():
mel = mel.unsqueeze(0).to(device)
audio_feature = whispermodel.embed_audio(mel)[0][:leng]
T = audio_feature.size(0)
input_ids_AA, input_ids_AT = [], []
for i in range(7):
lang_shift = layershift(_pad_a, i)
input_ids_item_AA = [layershift(_input_a, i)] + [lang_shift] * T + [(layershift(_eoa, i)), layershift(_answer_a, i)]
input_ids_item_AT = [layershift(_input_a, i)] + [lang_shift] * T + [(layershift(_eoa, i)), lang_shift]
input_ids_AA.append(torch.tensor(input_ids_item_AA))
input_ids_AT.append(torch.tensor(input_ids_item_AT))
input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, _answer_t])
input_ids_AA.append(input_id_T)
input_ids_AT.append(input_id_T)