深度学习自学笔记九:优化算法

本文详细介绍了梯度下降的几种变种,如mini-batch梯度下降、动量梯度下降、RMSprop和Adam优化算法,强调了学习率在这些方法中的作用。Adam算法结合了动量和RMSprop,具有自适应学习率的优势。
摘要由CSDN通过智能技术生成

目录

一、mini-batch梯度下降法

二、动量梯度下降法

三、RMsprop

四、Adam优化算法

五、学习率


一、mini-batch梯度下降法

小批量梯度下降(mini-batch gradient descent)是一种梯度下降法的变种,用于优化机器学习模型的参数。在传统的梯度下降中,每个训练样本都会计算出一个梯度,并根据该梯度对参数进行更新。而在小批量梯度下降中,每次迭代时,我们会选择一个固定大小的小批量样本集合,计算出该集合上的平均梯度,并使用该梯度来更新模型的参数。

具体步骤如下:

1. 将训练数据划分为多个小批量(mini-batches),每个小批量包含一组训练样本。

2. 对于每个小批量,计算其上的损失函数并求取梯度。

3. 对于每个参数,根据小批量的梯度和学习率更新参数值。

4. 重复步骤2和3,直到达到预设的迭代次数或收敛条件。

相比于传统的梯度下降,小批量梯度下降有以下优点:

1. 计算效率高:小批量梯度下降可以利用矩阵运算的并行性,加快梯度计算速度。

2. 内存消耗较低:每次只计算一个小批量的梯度,节省内存消耗。

3. 稳定性更好:相比于随机梯度下降(SGD),小批量梯度下降更新频率较低,更新方向更加稳定。

然而,小批量梯度下降也存在一些缺点。

由于每个批量的样本数量限制,可能会导致更新的方向存在一定的噪声,从而影响模型的收敛速度和性能。另外,对于不同大小的批量,学习率的设置也需要特别考虑。

选择合适的小批量大小是一个重要的问题。通常情况下,小批量大小的选择取决于训练数据集的大小和计算资源的限制。一般来说,小批量大小可以是几十到几千个样本。较大的批量可以提供更精确的梯度估计,但计算开销较大;较小的批量可以加快更新速度,但梯度估计可能存在较大的方差。

二、动量梯度下降法

动量梯度下降法(Momentum Gradient Descent)是一种优化算法,用于加速梯度下降的收敛过程,并在训练过程中减小震荡。

在传统的梯度下降中,每个参数的更新仅依赖于当前的负梯度和学习率。而在动量梯度下降中,我们引入了一个额外的变量,称为动量(momentum)。动量可以看作是模拟物理世界中的惯性,它记录了之前的梯度方向,并在更新时保持一定的方向。

具体步骤如下:

1. 初始化模型的参数和动量变量。

2. 对于每个训练样本,计算其上的梯度。

3. 更新动量变量:将当前梯度与动量变量相结合,得到新的动量变量。

4. 更新参数:根据新的动量变量和学习率,更新模型的参数。

5. 重复步骤2~4,直到达到预设的迭代次数或收敛条件。

动量梯度下降的关键在于动量变量的更新方式。常见的动量更新规则为:

velocity = momentum * velocity + learning_rate * gradient parameter = parameter - velocity

其中,velocity表示动量变量,momentum表示动量系数(通常取值为0.9或0.99),learning_rate表示学习率,gradient表示当前样本的梯度,parameter表示模型参数。

动量梯度下降的优点包括:

1. 加速收敛:动量的引入可以在训练初期加快参数更新速度,有助于快速逼近全局最优解。

2. 减小震荡:动量可以减小参数更新的方差,减少震荡现象,从而使模型更加稳定。

当动量系数设置得过大时,可能会导致参数在局部最小值附近来回振荡。同时,动量可能会使模型在参数空间中“越过”最优点,导致收敛不及预期。因此,在实践中,选择合适的动量系数是一个需要调节的超参数。

三、RMsprop

RMSprop(Root Mean Square Propagation)是一种优化算法,用于梯度下降的参数更新。它是Adam优化算法的一种变体。

RMSprop 的核心思想是自适应地调整学习率,以便在训练过程中更好地处理梯度的变化。相比于传统的梯度下降方法,RMSprop 通过平滑梯度的历史信息来调整学习率,从而更有效地更新模型参数。

具体步骤如下:

1. 初始化模型参数和梯度累积变量。

2. 对于每个训练样本,计算其上的梯度。

3. 更新梯度累积变量:将当前梯度的平方按指数衰减平均,并加入到梯度累积变量中。

4. 更新参数:根据梯度累积变量和学习率,更新模型参数。

5. 重复步骤2~4,直到达到预设的迭代次数或收敛条件。

RMSprop 的梯度累积变量更新规则如下:

gradient_accumulation = decay_rate * gradient_accumulation + (1 - decay_rate) * gradient^2

其中,`gradient_accumulation`表示梯度累积变量,`decay_rate`表示衰减率(通常取值为0.9),`gradient`表示当前样本的梯度。

参数更新规则如下:

parameter = parameter - learning_rate * gradient / (sqrt(gradient_accumulation) + epsilon)

其中,`learning_rate`表示学习率,`epsilon`是一个小的常数(通常取值为10^-8),用于避免除零错误。

RMSprop 的优点包括:

1. 自适应学习率:通过累积梯度的平方来自适应地调整学习率,可以更好地处理不同参数的变化情况。

2. 减小学习率的震荡:RMSprop 使用了梯度累积变量的平均值,可以使学习率在训练过程中更加稳定,减少震荡现象。

当学习率设置得过大时,可能会导致参数在局部最小值附近来回振荡。此外,RMSprop 对于具有不同尺度的参数可能表现不佳,这引入了后续改进算法如Adam的发展。

四、Adam优化算法

Adam(Adaptive Moment Estimation)是一种基于梯度下降的优化算法,结合了动量梯度下降和RMSprop的思想。它被广泛应用于深度学习中,能够自适应地调整学习率,并加速收敛过程。

Adam 算法的核心思想是在参数更新时综合考虑梯度的一阶矩估计(均值)和二阶矩估计(方差)。具体来说,Adam 维护了两个变量:动量变量(momentum)和梯度累积变量(gradient accumulation)。

算法步骤如下:

1. 初始化模型参数、动量变量和梯度累积变量。

2. 对于每个训练样本,计算其上的梯度。

3. 更新动量变量:将当前梯度与动量变量相结合,得到新的动量变量。

4. 更新梯度累积变量:将当前梯度的平方按指数衰减平均,并加入到梯度累积变量中。

5. 根据动量变量和梯度累积变量调整梯度的一阶矩估计和二阶矩估计。

6. 更新参数:根据调整后的梯度一阶矩估计和二阶矩估计,以及学习率,更新模型参数。

7. 重复步骤2~6,直到达到预设的迭代次数或收敛条件。

Adam 的参数更新规则如下:

m = beta1 * m + (1 - beta1) * gradient

v = beta2 * v + (1 - beta2) * gradient^2

m_hat = m / (1 - beta1^t)

v_hat = v / (1 - beta2^t)

parameter = parameter - learning_rate * m_hat / (sqrt(v_hat) + epsilon)

其中,`m`是动量变量,`v`是梯度累积变量,`beta1`和`beta2`是衰减率(一般取0.9和0.999),`learning_rate`是学习率,`t`是当前迭代次数,`epsilon`是一个小的常数(通常取值为10^-8),用于避免除零错误。

Adam 的优点包括:

1. 自适应学习率:通过动态调整梯度的一阶矩估计和二阶矩估计,能够自适应地调整学习率,适应不同参数的变化情况。

2. 加速收敛:Adam 综合了动量和RMSprop的优点,可以加快梯度下降的收敛速度,并具有较好的性能表现。

在初始阶段,由于动量和梯度累积变量的初始化为0,可能会导致参数更新过于激进。此外,对于不同尺度的参数,Adam 的表现可能会受到影响。

五、学习率

学习率(Learning Rate)是梯度下降算法中的一个重要超参数,用于控制每次参数更新的步长大小。它决定了模型在每一次迭代中对梯度的利用程度,可以影响模型的收敛速度和性能。

学习率的选择通常是一个关键问题,过小的学习率会导致模型收敛缓慢,而过大的学习率可能导致模型发散或无法收敛。因此,合适的学习率选择非常重要。

学习率的调整策略有多种,以下是一些常见的方法:

1. 固定学习率:将学习率设为一个固定的常数,在整个训练过程中保持不变。这种方法简单直接,但需要手动设置一个合适的学习率值。

2. 学习率衰减:随着训练的进行,逐渐减小学习率。常见的衰减策略包括按照固定步数或固定比例进行衰减。例如,每经过一定的迭代次数,将学习率乘以一个小于1的衰减因子。

3. 自适应学习率:根据模型在训练过程中的表现来自动调整学习率。常见的自适应学习率算法有RMSprop、Adam等,它们可以根据梯度的变化情况自动调整学习率的大小。

4. 手动调优:在训练过程中观察模型的表现,根据需要手动调整学习率。通常可以通过尝试不同的学习率,并选择表现最好的学习率。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ironmao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值