作为产品经理,我们在大模型时代应该如何应对。
最近我在招聘我们的AI产品经理,发现一个现象,80% 的申请者的 AI 从业经历都是从去年末到今年初开始的。 我一般会问这些候选人两个问题:为什么选择这个应用方向?如果项目效果不好,你觉得问题出在哪里?他们的答案中有一些共性,我进行了提炼。
第一,现阶段大多数AI产品需求是自上而下的,来自老板给的KPI,而不是真实的业务需求。
第二,现在所使用的能力大多是开源模型,经过简单的封装就上线,缺乏场景的独特性和技术壁垒。
第三,产品经理想实现的功能,会因为所使用的模型准确性不够,导致无法达到应用标准。
通过这些共性能看到大家对 AI 产品经理的定位可能还不是很清晰,只是在追逐潮流,拿着模型来找场景,只做了简单的交互体验的改变,而把最重要的效果寄托在大模型本身上。
我个人做 AI 产品经理已经有 6 年了,我认为 AI 产品不是简单的模型搬运工,大模型更像是一个全新的工具,取决于使用者对它的了解和改造能力。 所以我认为 AI 时代的产品经理必备两个能力:
第一,对算法的技术边界有所认知和了解,知道模型本身能解决什么问题,能否通过微调解决特定场景的需求。
第二,带着产品目标和需求去与算法同学一起打磨算法能力。
虽然我们没有算法那么精通技术,但需要具备与算法技术同学同频沟通的能力,了解模型的构建流程,知道如何准备有效的数据集,以及会运用评估模型性能的技术术语和方法。
另外,做任何方向的产品经理,最核心的是掌握市场趋势判断、洞察用户诉求的能力,带着用户痛点去找答案。 在当前 AI 大模型时代,我认为想转型成为 AI 产品经理的同学,应该在自己熟悉的领域和行业里思考如何与 AI 结合,不要成为模型能力的搬运工,而是带着痛点寻找 AI 的解决方案。
最后,以一个畅想来结束我的分享。相机是一个神奇的工具,能记录过去的点滴,用照片还原历史的时间轴,而在 AI Native/大模型的时代,我们希望妙鸭相机能让你看见各种可能,也能带你穿梭在过去与未来。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。