AI生图卷到这种程度了?小红书网红工作流ComfyUI Flux大公开,99%还原真实!

AI生图卷到这种程度了?小红书网红工作流ComfyUI Flux大公开,99%还原真实!


近年来,AI 图像生成(AIGC)技术突飞猛进,Stable Diffusion 模型及其衍生应用(如 ComfyUI)为内容创作开启了无限可能。今天,梦兽将为大家深度解析一个小红书网红常用的 ComfyUI 工作流,揭秘其背后的技术原理,让你也能轻松掌握 AI 生图的奥秘!

话不多说,先睹为快,看看效果如何:

图片

图片

图片

是不是已经心动了?别急,接下来就让我们一起揭开它神秘的面纱!

ComfyUI 工作流概览

ComfyUI 是一个基于节点(Node)的可视化 Stable Diffusion 工作流搭建工具,通过连接不同的节点,我们可以自定义图像生成过程。本次分享的工作流如下图所示,关注微信公众号:“梦兽编程”,回复“小红书网红工作流”即可获取。

图片

在这个工作流中,我们可以上传一张图片,利用本地模型 “Meta-Llama-3.1-8B-bnb-4bit” 提取图片信息,生成对应的“文生图提示词”,从而确保生成效果与原图高度一致。

模型列表

节点名称模型名称模型类型
UNETLoaderflux1-dev-fp8.safetensorsMODEL
DualCLIPLoadert5xxl_fp8_e4m3fn.safetensorsCLIP
DualCLIPLoaderclip_l.safetensorsCLIP
LoraLoaderModelOnlylora.safetensorsLora
LoraLoaderModelOnlyFlux_小红书真实风格丨日常照片丨极致逼真_V1.safetensorsLora
VAELoaderae.safetensorsVAE
JoyCaptionMeta-Llama-3.1-8B-bnb-4bitSTRING

除了“Flux_小红书真实风格丨日常照片丨极致逼真_V1.safetensors”模型外,其他模型均可在 Hugging Face(“黄脸”开源模型官网)获取。

“Flux_小红书真实风格丨日常照片丨极致逼真_V1.safetensors”模型下载链接:

https://www.liblib.art/modelinfo/d9675e37370e493ab8bf52046827a2b0?from=search

小提示

  • • JoyCaption 节点使用的 Meta-Llama-3.1-8B-bnb-4bit 是一个本地模型, 作用是通过图片提取图片信息生成对应的文生图提示词

img
为了帮助大家更好地掌握 ComfyUI,我花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

一、ComfyUI配置指南

  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

img

二、ComfyUI基础入门

  • 软件安装篇
  • 插件安装篇

img

三、 ComfyUI工作流节点/底层逻辑详解

  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

img

四、ComfyUI节点技巧进阶/多模型串联

  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

img

五、ComfyUI遮罩修改重绘/Inpenting模块详解

  • 图像分辨率
  • 姿势

img

六、ComfyUI超实用SDXL工作流手把手搭建

  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

img

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

img

在这里插入图片描述

### 适用于交通流预测的最佳图卷积神经络架构 #### 架构概述 对于交通流预测问题,时空图卷积神经络(STGCN)被认为是一个非常有效的解决方案[^3]。该方法结合了时间序列建模和空间依赖性的捕捉能力,能够有效处理复杂的交通数据特性。 STGCN的核心思想在于将时间和空间维度分别编码到不同的模块中进行联合优化。具体来说,它由多个时空卷积块组成,每个块内部又进一步细分为两个子部分:一个是负责捕获空间依赖关系的空间图卷积层;另一个则是用于提取时间动态的时间卷积层。这种设计使得模型能够在保持较低计算成本的同时获得较高的预测精度。 #### 实现细节 以下是基于PyTorch的一个简单STGCN实现示例: ```python import torch import torch.nn as nn import torch.nn.functional as F class SpatialConv(nn.Module): """ 空间图卷积层 """ def __init__(self, in_channels, out_channels, adjacency_matrix): super(SpatialConv, self).__init__() self.adjacency_matrix = adjacency_matrix self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) def forward(self, x): adj = self.adjacency_matrix.to(x.device) support = torch.matmul(adj, x.permute(0, 2, 1)).permute(0, 2, 1) output = self.conv(support.unsqueeze(-1)) return output.squeeze(-1) class TemporalConv(nn.Module): """ 时间卷积层 """ def __init__(self, in_channels, out_channels, kernel_size=3): super(TemporalConv, self).__init__() self.temp_conv = nn.Conv2d(in_channels, out_channels, (1, kernel_size)) def forward(self, x): return self.temp_conv(x) class STBlock(nn.Module): """ 时空卷积块 """ def __init__(self, in_channels, spatial_out_channels, temporal_out_channels, adjacency_matrix): super(STBlock, self).__init__() self.spatial_conv = SpatialConv(in_channels, spatial_out_channels, adjacency_matrix) self.temporal_conv = TemporalConv(spatial_out_channels, temporal_out_channels) def forward(self, x): s_output = self.spatial_conv(x.transpose(1, 2).unsqueeze(-1)).transpose(1, 2) t_output = self.temporal_conv(s_output.unsqueeze(-1)) return t_output.squeeze(-1) class STGCN(nn.Module): """ 完整的STGCN模型 """ def __init__(self, input_dim, hidden_spatial_dim, hidden_temporal_dim, num_blocks, adjacency_matrix, output_steps): super(STGCN, self).__init__() blocks = [] for i in range(num_blocks): blocks.append( STBlock(input_dim if i == 0 else hidden_temporal_dim[-1], hidden_spatial_dim[i], hidden_temporal_dim[i], adjacency_matrix) ) self.st_blocks = nn.Sequential(*blocks) self.fc = nn.Linear(hidden_temporal_dim[-1], output_steps) def forward(self, x): x = self.st_blocks(x) x = self.fc(x.mean(dim=-1)) return x ``` 上述代码展示了如何构建一个基本的STGCN模型,其中`SpatialConv`实现了空间上的图卷积操作,而`TemporalConv`则专注于时间维度的信息抽取。最终通过全连接层完成对未来时间段内的流量预测。 #### 关键技术点分析 - **空域图卷积**:为了更好地描述道路之间的拓扑结构以及车辆流动模式,在实际应用过程中往往需要预先定义好一张反映路连通情况的邻接矩阵作为输入的一部分[^4]。 - **时间窗口选取**:考虑到短期历史记录可能对当前状态影响较这一特点,一般会设置较短的历史观测长度来训练模型。 - **损失函数选择**:均方误差(MSE)是最常用的评估指标之一,因为它可以直接衡量预测值与真实值之间差距小。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值