1.为什么平方损失函数不适用于分类问题,交叉熵损失函数不适用于回归问题?
损失函数是用来估量模型的预测值与真实值的不一致程度,损失函数越小,模型的鲁棒性越好。
平方损失函数不适用于分类问题的原因:首先,分类问题的标签是离散的值,标签之间没有关系,这时如果要用平方损失函数处理分类问题,通过计算各个样本之间的距离来衡量损失程度是不合适的。例如分类一个标签集合为{1,2,3}的数据集,对于一个真实值为1的样本,它被错分到2,3的损失程度应该是一样的(标签之间没有关系),但是根据平方损失函数,它被错分入2,3的损失函数分别为1/2,2,看出显然是不合适的。
交叉熵损失函数不适用于回归问题的原因:交叉熵损失函数的分类结果只和正确的预测结果有关,该损失函数除了让正确分类尽量变大,还会让错误分类都变得更加平均,但实际中后面的这个调整使没必要的。但是对于回归问题这样的考虑就显得重要了,因而回归问题上使用交叉熵损失函数并不适合。
2.对于一个三分类问题,数据集的真实标签和模型的预测标签如下:
分别计算模型的精准率、召回率、F1值以及它们的宏平均和微平均。
格式要求:使用公式编辑器,在博客上正确书写格式。
真实标签\预测标签 | 1 | 2 | 3 |
---|---|---|---|
1 | 1 | 1 | 0 |
2 | 0 | 2 | 1 |
3 | 1 | 1 | 2 |
使用LaTaX公式编辑器计算:
准确率:
召回率:
F值:
宏平均:
微平均: