【23-24 秋学期】NNDL 作业2

1.为什么平方损失函数不适用于分类问题,交叉熵损失函数不适用于回归问题?

损失函数是用来估量模型的预测值与真实值的不一致程度,损失函数越小,模型的鲁棒性越好。

平方损失函数不适用于分类问题的原因:首先,分类问题的标签是离散的值,标签之间没有关系,这时如果要用平方损失函数处理分类问题,通过计算各个样本之间的距离来衡量损失程度是不合适的。例如分类一个标签集合为{1,2,3}的数据集,对于一个真实值为1的样本,它被错分到2,3的损失程度应该是一样的(标签之间没有关系),但是根据平方损失函数,它被错分入2,3的损失函数分别为1/2,2,看出显然是不合适的。

交叉熵损失函数不适用于回归问题的原因:交叉熵损失函数的分类结果只和正确的预测结果有关,该损失函数除了让正确分类尽量变大,还会让错误分类都变得更加平均,但实际中后面的这个调整使没必要的。但是对于回归问题这样的考虑就显得重要了,因而回归问题上使用交叉熵损失函数并不适合。

2.对于一个三分类问题,数据集的真实标签和模型的预测标签如下:

分别计算模型的精准率召回率F1值以及它们的宏平均微平均

格式要求:使用公式编辑器,在博客上正确书写格式。

真实标签\预测标签123
1110
2021
3112

使用LaTaX公式编辑器计算:

准确率:

召回率:

F值:

宏平均:

微平均:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值