算法中的数学知识

算法中的数学知识

约数

在这里插入图片描述


约数个数

在这里插入图片描述

原题链接:约束个数

代码如下:

#include <iostream>
#include <unordered_map>
#include <algorithm>
using namespace std;
const int N = 110, mod = 1e9 + 7;
int main() {
    int n;
    cin >> n;
    unordered_map<int, int> primes; //分别存储质因子的底数和指数
    while(n--) {
        int x;
        cin >> x;
        for(int i = 2; i <= x / i; i++) {
            while(x % i == 0) {
                x /= i;
                primes[i]++;
            }
        }
        if(x > 1)   primes[x]++;
    }
    long long res = 1;
    for(auto prime : primes)    res = res * (prime.second + 1) % mod;
    cout << res;
    return 0;
}

约数之和

在这里插入图片描述

原题链接:约数之和

代码如下:

#include <bits/stdc++.h>
using namespace std;
const int mod = 1e9 + 7;
int main() {
    int n;
    cin >> n;
    unordered_map<int, int> primes;
    while(n--) {
        int x;
        cin >> x;
        for(int i = 2; i <= x / i; i++) {
            while(x % i == 0) {
                x /= i;
                primes[i]++;
            }
        }
        if(x > 1)   primes[x]++;
    }
    long long res = 1;
    
    for(auto prime : primes) {
        long long t = 1;
        while(prime.second --)
            t = (prime.first * t + 1) % mod;
        res = res * t % mod;
    }
    cout << res;
    return 0;
}

筛法求质数

在这里插入图片描述

原题链接:筛质数

每次从最小质数开始遍历,可以保证n只会被最小质数筛到, 避免多次筛到, 每个数只会被筛一次, 即时间复杂度为 O ( n ) O(n) O(n), 线性筛法

#include <iostream>
using namespace std;
const int N = 1e6 + 10;
int primes[N];
bool st[N];
int n;
int get_primes(int n) {
    if(n < 2)   return 0;
    int cnt = 0;
    for(int i = 2; i <= n; i++ ) {	//一次线性筛选,即可完成操作
        if(!st[i]) primes[cnt++] = i;	//没被筛到,则为质数
        for(int j = 0; primes[j] * i <= n; j++) {
            st[primes[j] * i] = true;	//从最小质数集开始筛选相关合数
            if(i % primes[j] == 0)  break;	//找到最小质因数,直接操作结束
        }
    }
    return cnt;
}
int main() {
    cin >> n;
    cout << get_primes(n);
    return 0;
}

阶乘分解

在这里插入图片描述

题目链接:https://www.acwing.com/problem/content/description/199/

解法一

思路分析:
在这里插入图片描述

先用线性筛法求出质数数组,随后对每个质数进行操作

a n s = ∑ p r i m e s [ i ] n n p + n p 2 + n p 3 + … ans = \sum_{primes[i]}^{n} \frac{n}{p} + \frac{n }{p^2} + \frac{n}{p^3} + … ans=primes[i]npn+p2n+p3n+

代码

//思路:将质数最小到大进行枚举,直接通过“倍数”[n/p]来计算相应次数,然而[1,n]中
//有的数含的p的次数不止一次,故进行[n/p] + [n / p^2] + [n / p^3] + ...
#include <iostream>
using namespace std;
const int N = 1e6 + 10;
int primes[N], cnt = 0;
bool st[N];
void get_primes(int n) {
    for(int i = 2; i <= n; i++) {   //枚举1~n中的所有筛选质数
        if(!st[i])  primes[cnt++] = i;  //若没有被筛掉,则为质数
        for(int j = 0; primes[j] * i <= n; j++) {
            st[primes[j] * i] = true;
            if(i % primes[j] == 0)  break;
        }
    }
}

int main() {
    int n;
    cin >> n;
    get_primes(n);  //先初始化primes数组
    //然后进行枚举各个质数算出次数
    for(int i = 0; i < cnt; i++) {
        int p = primes[i];  //质数
        int t = n, ct = 0;
        while(t) ct += t / p, t /= p;   //每次的t/=p,下一次就成了cnt += t/p^2
        printf("%d %d\n", primes[i], ct);
    }
    
}
解法二:

思路同上

#include <bits/stdc++.h>
using namespace std;
int n;
bool prime(int x) {
    if (x == 2) return 1;
    for (int i = 2; i * i <= x; i++) if (x % i == 0) return 0;
    return 1;
}
int main() {
    scanf("%d", &n);
    for (int i = 2; i <= n; i++) {
        if (!prime(i)) continue;
        long long x = i; int ans = 0;
        while (x <= n) ans += n / x, x *= i;
        printf("%d %d\n", i, ans);
    }
    return 0;
}

欧拉函数

基本模板

原题链接:欧拉函数


在这里插入图片描述

在这里插入图片描述

#include <iostream>
#include <unordered_map>
using namespace std;
int euler(int x) {
    int res = x;
    for(int i = 2; i <= x / i; i++) {
        if(x % i == 0) {
            res = res / i * (i - 1);
            while(x % i == 0)    x /= i;
        }
    }
    if(x > 1)   res = res / x * (x - 1);
    return res;
}

int main() {
    int n;
    cin >> n;
    while(n --) {
        int a;
        cin >> a;
        cout << euler(a) << endl;
    }
    return 0;
}

筛法求欧拉函数

原题链接

在这里插入图片描述

代码如下:

//欧拉:1 ~ n - 1 中与n互质的数的个数
#include <iostream>
#include <bitset>
using namespace std;
const int N = 1e6 + 10;
int primes[N], cnt;
int phi[N];
bitset<N> st;
long long get_eulers(int n) {
    long long res = 0;
    phi[1] = 1;
    for(int i = 2; i <= n; i++) {   //线性筛法,遍历一次n
        if(!st[i]) {    //没有被筛,质数
            primes[cnt++] = i;
            phi[i] = i - 1; //若为质数,则代表1 ~ i - 1都为互质
        }
        for(int j = 0; primes[j] <= n / i; j++) {
            st[primes[j] * i] = 1;
            if(i % primes[j] == 0)  {
                //若primes[j]为i的质因数,则有 primes[j] 的质因子必然存在于i中
                phi[i * primes[j]] = primes[j] * phi[i];
                break;
            }
            //若i % primes[j] != 0,则对质数primes[j]另行计算有:p[j] * (p[j] - 1) / p[j]
            phi[i * primes[j]] = phi[i] * (primes[j] - 1);
        }
    }
    for(int i = 1; i <= n; i++) res += phi[i];
    return res;
}
int main() {
    int n;
    cin >> n;
    cout << get_eulers(n); 
    return 0;
}

大数据幂的欧拉函数

原题链接:互质数的个数

分析:

如上图可以将 ϕ ( a b ) \phi(a^b) ϕ(ab)分解为 a b ∗ ϕ ( a ) a^b*\phi(a) abϕ(a), 继续演变为求欧拉快速幂的结合应用

*** 代码如下:***

#include <iostream>
using namespace std;
const int MOD = 998244353;
long long qmi(long long a, long long b) {
    long long res = 1;
    while(b) {
        if(b & 1)   res = res * a % MOD;
        a = a * a % MOD;
        b >>= 1;
    }
    return res;
}
int main() {
    long long a, b;
    cin >> a >> b;
    if(a == 1) {    //题目要求是x不能取到a^b, 故如果a=1,互质个数为0
        cout << 0 << endl;
        return 0;
    }
    long long res = a, x = a;
    for(int i = 2; i <= x / i; i++) {
        if(x % i == 0) {
            res = res / i * (i - 1);
            while(x % i == 0)   x /= i;
        }
    }
    if(x > 1)   res = res / x * (x - 1);
    cout << res * qmi(a, b - 1) % MOD << endl;
    return 0;
}

快速幂

基本思想:

a k a^k ak化为 a 2 x   1   ∗ a 2 x   2   ∗ a 2 x   3 ∗ . . . ∗ a 2 x   t   a^{2x~1~}*a ^{2x~2~} * a^{2x~3} * ...*a^{2x~t~} a2x 1 a2x 2 a2x 3...a2x t 

***本质:***将k化为若干个2的次幂之和

这时候可以想到用二进制来操作

例如:若 k = 1101010 < = = > <==> <==> 2 1 + 2 3 + 2 5 + 2 6 2^1 + 2^3 + 2^5 + 2^6 21+23+25+26

对二进制位数进行遍历, 当k & 1 == 1,即当前k的最后一个位置为1,进行累乘

代码如下:

#include <iostream>
using namespace std;
typedef long long LL;
// a^k % p
int qmi(int a, int k, int p) {
    int res = 1;
    //本质:将k拆分为2的n次幂之和
    while(k){ 
        if(k & 1)   res = (LL)res * a % p;
        k >>= 1;
        a = (LL)a * a % p; 
    }
    return res;
}

int main() {
    int n;
    cin >> n;
    while(n-- ) {
        int a, b, p;
        scanf("%d%d%d", &a, &b, &p);
        cout << qmi(a, b, p) << endl;
    }
    return 0;
}

费马小定理

a p 与 a 在 m o d ( p ) 的情况下是同余的 a^p与a在mod(p)的情况下是同余的 apamod(p)的情况下是同余的

在这里插入图片描述

快速幂求逆元

快速幂求逆元

在这里插入图片描述

**分析:**只需求出 b p − 2   %   p b^{p-2}\ \%\ p bp2 % p的快速幂即可

在这里插入图片描述

代码如下:

#include <iostream>
using namespace std;
typedef long long LL;

int qmi(int a, int k, int p) {
    int res = 1;
    while(k) {
        if(k & 1)   res = (LL)res * a % p;
        k >>= 1;
        a = (LL)a * a % p;
    }
    return res;
}
int main() {
    int n;
    cin >> n;
    while(n-- ) {
        int a, p;
        scanf("%d%d", &a, &p);
        if(a % p == 0)  cout << "impossible" << endl;
        else cout << qmi(a, p - 2, p) << endl;
    }
    return 0;
}

数论分块

在这里插入图片描述

一般在算法中遇到时间复杂度为1e9的, 那么一次 O ( n ) O(n) O(n)的遍历无法解决问题

求··· ∑ i = 1 n [ n i ] \sum_{i=1}^n{[\frac{n}{i}]} i=1n[in]···

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述


例题:因数平方和

在这里插入图片描述

分析:

要求 n n n的约数,时间复杂度肯定不够, 所以想到反着求

ab约数 <==> ba倍数,所以我们只需要求哪些数包含约数a相加

每一个约数a 对答案的贡献度为 a 2 a^2 a2, 每个数a n a \frac{n}{a} an个数的约数

a这个数对答案的总贡献为 a 2   ∗   [ n a ] a^2\ *\ [\frac{n}{a}] a2  [an],故答案为:
∑ i = 1 n   [ n i ] ∗ i 2 \sum_{i=1}^n\ [\frac{n}{i}]*i^2 i=1n [in]i2

在这里插入图片描述

在这里插入图片描述

由上可知, 可以将n划分为前半段和后半段的话, 可计算出只需操作 2 n 2\sqrt{n} 2n 个数即可

如此, 可以将 n n n优化为 2 n 2\sqrt{n} 2n 个数进行计算

进行分块治理,如下

在这里插入图片描述

将区间长度为 n n n划分为 2 n 2\sqrt{n} 2n 个区间, 对每个区间进行求值,每个区间值相同, 只需算连续平方和,可以直接用公式求平方和值, 故每个区间只需要算一次即可

结果 O ( N ) − − > O ( N 2 ) O(N) - - > O(N^2) O(N)>O(N2)

在这里插入图片描述

推导出:每个区间最大的位置: y = n / x y = n / x y=n/x , 对于各个区间值为== x = n / i x = n / i x=n/i==

即计算区间和每个== [ i , y ] [i, y] [i,y]区间即可, 然后算完一个区间直接 i = y + 1 i = y + 1 i=y+1,来跳跃到下一个区间进行计算, 总共只需要算 2 n 2\sqrt{n} 2n ==次

具体代码:

此题在计算平方和时可能数据量会超大(超LL)

__int128写法
#include <iostream>
using namespace std;
const int MOD = 1e9 + 7;
typedef long long LL;
//__int128 : 2^127 - 1
LL calc(int n) {    //计算平方和
//这里可能特别大超过2^64(LL),故用__int128临时存储数值
    return n * (__int128)(n + 1) * (2*n + 1) / 6 % MOD;   
}

int main() {
    int n;
    cin >> n;
    LL res = 0;
    for(int i = 1; i <= n; ) {
        //划分为2sqrt(n)个区间,每个区间的所有数相等,第i个区间值为n/i
        int x = n / i, y = n / x;   
        //求区间[i, y]的平方和,再乘上x值
        res = res + x * (calc(y) - calc(i - 1)) % MOD;
        i = y + 1;  
    }
    //这块可能取模相减为负值,故
    cout << (res + MOD) % MOD << endl;
    return 0;   
}

逆元写法
LL calc(int n) {    //计算平方和
//这里可能特别大超过2^64(LL),故用__int128临时存储数值
    // return n * (LL)(n + 1) * (2*n + 1) / 6 % MOD;   
//逆元写法
    return n * (LL)(n + 1) % MOD * (2*n + 1) % MOD * 166666668 % MOD;
}


//计算 /6 的逆元
/for(int i = 1; ;i++) {		//算出逆元答案为166666668, 带入上式替换掉 '/6'
    if(i * 6 % MOD == 1) {
        cout << i << endl;
        return 0;
	}
}
 
例题2:余数之和

原题链接

在这里插入图片描述

思想:

首先看到数据范围为1e9级别,故可以想到用分块思想,优化到 O ( 2 n ) O(2\sqrt{n}) O(2n )

k % i k \% i k%i <==> k − [ k i ] ∗ i k - [\frac{k}{i}]*i k[ik]i

k % ∑ 1 n k \% \sum_1^n k%1n < = = > <==> <==> n ∗ k   −   ∑ i = 1 n [ k i ] ∗ i n*k\ -\ \sum_{i=1}^n[\frac{k}{i}]*i nk  i=1n[ik]i

代码:

#include <iostream>
using namespace std;
typedef long long LL;
LL sum_primes(int n, int k) {
    //k % i = k - [k / i] * i  --->   k % [1, n] = n*k - k / [1,n]*i
    LL res = (LL)n * k;
    for(int i = 1; i <= n; ) {
        if(k < i)   break;  //此时往后全为0,不用操作了
        int x = k / i, y = min(k / x, n);   //区间有极限值为n,防止越界
        //求区间总值 * x  --- > 等差数列求和:n * (a1 + an) / 2
        res -= x * (LL)(y - i + 1) * (i + y) / 2;
        i = y + 1;  //操作下一个区间
    }
    return res;
}
int main() {
    int n, k;
    cin >> n >> k;
    cout << sum_primes(n, k) << endl;
    return 0;
}

高斯消元法

基本性质:

  1. 把某一行乘一个非 0 0 0的数 (方程的两边同时乘上一个非 0 0 0数不改变方程的解)

  2. 交换某两行 (交换两个方程的位置)

  3. 把某行的若干倍加到另一行上去 (把一个方程的若干倍加到另一个方程上去)

2AC12ACC19AF7566CEB46399BCF82BFC.jpg

算法步骤

枚举每一列c

    1. 找到绝对值最大的一行
    1. 将该行换到最上面
    1. 将该行第1个数变成1
    1. 将下面所有行的第c列清成0
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
const int N = 110;
double a[N][N];
int n;
const double eps = 1e-8;    //浮点型存在精度误差,容易
/*枚举每一列
- 1. 找到绝对值最大的一行 
- 2. 将该行换到最上面(第r行)
- 3. 将该行第1个数变成1
- 4. 将下面所有行的第`c`列清成0
    
*/
int gauss() {
    int c, r;
    //首先开始枚举每一列进行“清零”操作
    for(c = 0, r = 0; c < n; c ++) {
        int mx_r = r;
        for(int i = r; i < n; i++)  //找到绝对值最大的一行
            if(fabs(a[i][c]) > fabs(a[mx_r][c]))
                mx_r = i;
        if(fabs(a[mx_r][c]) < eps)    continue;    //判断最大如果为0,那么没有算的必要
        for(int i = c; i <= n; i++) swap(a[mx_r][i], a[r][i]);  //换到第r行
        for(int i = n; i >= 0; i-- )    a[r][i] /= a[r][c]; //第”首位(c)“变为1
        for(int i = r + 1; i < n; i++ ) {
            // 将下面所有行的第`c`列清成0
            if(fabs(a[i][c]) > eps) //若是=0则没必要操作
                for(int j = n; j >= c; j--)
                    a[i][j] -= a[i][c] * a[r][j];   //a[r][c]为1,故这样可以消0
        }
        r++;    //该方程式固定好,进行下一个方程式行的操作
    }
    //判断无解和无限解的情况
    if(r < n) { //这样的话,那么说明未知数方程式个数不足n,则无法构成完美梯形
        for(int i = r; i < n; i++ )
            if(fabs(a[i][n]) > eps) //多出的答案bi若是不等于0
                return 2;   //无解
        return 1;  //无限解    0 == 0
    }   
    //进行上三角矩阵的方程化简
    for(int i = n - 1; i >= 0; i -- ) { //从后往前,anxn = bn,一步一步推前方的方程式未知数
        for(int j = i + 1; j < n; j++)  //每i到最后只需保留第i个数(1),其它数全清零
            a[i][n] -= a[i][j] * a[j][n];   //这里第j行的答案已经算出,后续数(清零)的同步操作
    }
    return 0;   //有唯一解
}

int main() {
    cin >> n;
    for(int i = 0; i < n; i++ )
        for(int j = 0; j < n + 1; j++ )
            cin >> a[i][j];
    int r = gauss();
    if(r == 0) {
        for(int i = 0; i < n; i ++) printf("%.2lf\n", a[i][n]);
    } else if(r == 1)   puts("Infinite group solutions");
      else puts("No solution");
      
    return 0;
}

组合数学

题型一

在这里插入图片描述

直接算的话会超时
考虑到只有2000 *2000个数,可以直接先打好表
C a b = C a − 1 b − 1 + C a − 1 b C^b_a = C^{b-1}_{a-1} + C^{b}_{a-1} Cab=Ca1b1+Ca1b

代码

#include <iostream>
using namespace std;
const int N = 2010, MOD = 1e9 + 7;
int n;
int c[N][N];    //表示组合数C^b_a

void init() {
    for(int i = 0; i < N; i++ ) 
        for(int j = 0; j <= i; j++) 
            if(j == 0)  
                c[i][j] = 1;
            else 
                c[i][j] = c[i - 1][j - 1] % MOD + c[i - 1][j] % MOD;
}

int main() {
    cin >> n;
    init();
    while(n --) {
        int a, b;
        scanf("%d%d", &a, &b);
        printf("%d\n", c[a][b] % MOD);
    }
    return 0;
}
题型二

在这里插入图片描述

时间复杂度高,直接算不行,用集合状态的公式也不行
可以想到如何直接算出fact[N]的表然后套公式打表
C a b = a ! ( b ! ) ∗ ( a − b ) ! C^b_a = \frac{a!}{(b!)*(a - b)!} Cab=(b!)(ab)!a!
由于存在除法,数据量过大需要及时取模,而除法直接取模会导致答案变化,故想到求逆元(费马小定理+快速幂)然后进行相乘


代码如下

#include <iostream>
using namespace std;
typedef long long LL;
const int N = 100010, MOD = 1e9 + 7;
int n;
int fact[N], infact[N]; //分别存储阶乘\阶乘的逆元
int qmi(int a, int b, int p) {
    int res = 1;
    while(b) {
        if(b & 1)   res = (LL)res * a % MOD;
        a = (LL)a * a % MOD;
        b >>= 1;
    }
    return res;
}
void init() {
    //0的阶乘/逆元阶都为1
    fact[0] = infact[0] = 1;
    for(int i = 1; i < N; i++) {
        fact[i] = (LL)fact[i - 1] * i % MOD;
        infact[i] = (LL)infact[i - 1] * qmi(i, MOD - 2, MOD) % MOD;
    }
}

int main() {
    init();
    cin >> n;
    while(n-- ) {
        int a, b;
        scanf("%d%d", &a, &b);
        printf("%d\n", (LL)fact[a] % MOD * infact[b] % MOD * infact[a - b] % MOD);
    }
    
    return 0;
}

题型三(卢卡斯定理)

公式如下
C a b ≡ C a   m o d   p b   m o d   p ∗ C a   /   p b   /   p   ( m o d   p ) C^b_a \equiv C^{b\ mod\ p}_{a\ mod\ p} * C^{b\ /\ p}_{a\ /\ p}\ (mod\ p) CabCa mod pb mod pCa / pb / p (mod p)

推导

在这里插入图片描述

代码:

//发现a,b很大,而p很小,这种情况下用lucas定理来处理
#include <iostream>
using namespace std;
typedef long long LL;
int qmi(int a, int b, int p) {
    int res = 1;
    while(b) {
        if(b & 1)   res = (LL)res * a % p;
        a = (LL)a * a  % p;
        b >>= 1;
    }
    return res;
}
int C(int a, int b, int p) {
    if(b > a)   return 0;   //!边界条件
    int res = 1; // a!/(b!(a-b)!) = (a-b+1)*...*a / b!
    for(int i = 1, j = a; i <= b; i++, j--) {
        res = (LL)res * j % p;
        res = (LL)res * qmi(i, p - 2, p) % p;
    }
    return res;
}
int lucas(LL a,LL b, int p) {
    if(a < p && b < p)  return C(a, b, p);
    return (LL)C(a % p, b % p, p) * lucas(a / p, b / p, p) % p;//a%p后肯定是<p的,所以可以用C(),但a/p后不一定<p 所以用lucas继续递归
}
int main() {
    int n;
    cin >> n;
    while(n--) {
        int p;
        LL a, b;
        cin >> a >> b >> p;
        printf("%d\n", lucas(a, b, p));
    }
    return 0;
}

卡特兰数

889. 满足条件的01序列

题目链接:https://www.acwing.com/problem/content/891/

在这里插入图片描述

题目思路:

在这里插入图片描述


通过以上举例n=6时的情况,可以推出最终:
a n s = C 2 n n   −   C 2 n n − 1 ans = C_{2n}^n\ -\ C_{2n}^{n-1} ans=C2nn  C2nn1
又可化简为:
C 2 n n   −   C 2 n n − 1 = C 2 n n n + 1 C_{2n}^n\ -\ C_{2n}^{n-1} = \frac{C_{2n}^n}{n+1} C2nn  C2nn1=n+1C2nn
代码实现:

#include <iostream>
using namespace std;
const int MOD = 1e9 + 7;
typedef long long LL;
//用卡特兰公式: ans = (c^n_2n) / (n + 1)
int qmi(int a, int b, int p) {
    int res = 1;
    while(b) {
        if(b & 1)   res = (LL)res * a % p;
        a = (LL)a * a % p;
        b >>= 1;
    }
    return res;
}

int main() {
    int n;
    cin >> n;
    int res = 1;
    // res = [(2n)! / (n! * n!)] / (n + 1)
    for(int i = 2 * n; i > 2*n - n; i--)    res = (LL)res * i % MOD;
    for(int i = 1; i <= n; i++) res = (LL)res * qmi(i, MOD - 2, MOD) % MOD;
    res = (LL)res * qmi(n + 1, MOD - 2, MOD) % MOD;
    cout << res;
    return 0;
} 

129.火车进站问题

原题链接:https://www.acwing.com/problem/content/131/

在这里插入图片描述

输入样例:

3

输出样例:

123
132
213
231
321

代码

#include <iostream>
#include <vector>
#include <stack>
#define end '\n'
using namespace std;
vector<int> path;
stack<int> stk;
int n, remain = 20;
void dfs(int u) {
    if(remain == 0) return ;
    if(path.size() == n) {
        remain --;  //剩余输出量
        for(auto t : path)
            cout << t;
        cout << endl;
        return ;
    }
    //两种操作选择
    //1. 出栈操作
    if(!stk.empty()) {  
        path.push_back(stk.top());
        stk.pop();
        dfs(u); //从1开始进行枚举
        //恢复操作
        stk.push(path.back());
        path.pop_back();
    }
    //2. 入栈操作
    if(u <= n) {
        stk.push(u);
        dfs(u + 1);
        //恢复操作
        stk.pop();
    }
}
int main() {
    cin >> n;
    dfs(1);
    return 0;
}

130.火车进出栈问题

原题链接:https://www.acwing.com/problem/content/132/

在这里插入图片描述

  • 63
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值