Z检验学习笔记
简介
Z检验是一种常用的假设检验方法,通常用于判断一个样本的均值是否与总体均值相等。其原理是通过计算样本均值与总体均值之间的差异,来判断这种差异是否显著。
基本概念
样本均值
样本均值(sample mean)是指从总体中取出一部分样本后,这些样本的观测值的平均数。
x ˉ = 1 n ∑ i = 1 n x i \bar{x} = \frac{1}{n}\sum_{i=1}^nx_i xˉ=n1i=1∑nxi
其中, x i x_i xi为第 i i i个样本的观测值, n n n为样本容量。
总体均值
总体均值(population mean)是指包含所有可能样本的总体中,所有观测值的平均数。
μ = 1 N ∑ i = 1 N x i \mu = \frac{1}{N}\sum_{i=1}^Nx_i μ=N1i=1∑Nxi
其中, x i x_i xi为第 i i i个观测值, N N N为总体容量。
标准误差
标准误差(standard error)是样本均值的标准差。其公式如下:
S E = s n SE = \frac{s}{\sqrt{n}} SE=ns
其中, s s s为样本标准差, n n n为样本容量。
Z值
Z值(z-score)是样本均值与总体均值之间的差异,以标准误差为单位进行度量。其公式如下:
Z = x ˉ − μ S E Z = \frac{\bar{x}-\mu}{SE} Z=SExˉ−μ
Z值可以用于判断样本均值是否显著偏离总体均值。如果Z值较大,则说明样本均值与总体均值之间的差异较大,这种差异可能不是由抽样误差所致。
Z检验流程
Z检验的基本流程如下:
- 根据问题确定原假设 H 0 H_0 H0和备择假设 H 1 H_1 H1。
- 确定显著性水平 α \alpha α。
- 从总体中随机抽取一个样本,并计算该样本的样本均值 x ˉ \bar{x} xˉ和标准误差 S E SE SE。
- 计算Z值: Z = x ˉ − μ S E Z = \frac{\bar{x}-\mu}{SE} Z=SExˉ−μ。
- 根据显著性水平 α \alpha α和自由度 n − 1 n-1 n−1,查找正态分布表中对应的临界值 z α / 2 z_{\alpha/2} zα/2和 p p p值。
- 判断Z值是否落在拒绝域内(即 Z < − z α / 2 Z<-z_{\alpha/2} Z<−zα/2或 Z > z α / 2 Z>z_{\alpha/2} Z>zα/2),如果是,则拒绝原假设;否则,接受原假设。
总结
本文介绍了Z检验的基本概念、样本均值、总体均值、标准误差和Z值等相关知识。Z检验是一种常用的假设检验方法,可以用于判断一个样本的均值是否显著偏离总体均值。在实际应用中,需要根据问题特点选择不同的显著性水平和样本容量,以提高检验的准确性和可靠性。