Z检验学习笔记

Z检验学习笔记

简介

Z检验是一种常用的假设检验方法,通常用于判断一个样本的均值是否与总体均值相等。其原理是通过计算样本均值与总体均值之间的差异,来判断这种差异是否显著。

基本概念

样本均值

样本均值(sample mean)是指从总体中取出一部分样本后,这些样本的观测值的平均数。

x ˉ = 1 n ∑ i = 1 n x i \bar{x} = \frac{1}{n}\sum_{i=1}^nx_i xˉ=n1i=1nxi

其中, x i x_i xi为第 i i i个样本的观测值, n n n为样本容量。

总体均值

总体均值(population mean)是指包含所有可能样本的总体中,所有观测值的平均数。

μ = 1 N ∑ i = 1 N x i \mu = \frac{1}{N}\sum_{i=1}^Nx_i μ=N1i=1Nxi

其中, x i x_i xi为第 i i i个观测值, N N N为总体容量。

标准误差

标准误差(standard error)是样本均值的标准差。其公式如下:

S E = s n SE = \frac{s}{\sqrt{n}} SE=n s

其中, s s s为样本标准差, n n n为样本容量。

Z值

Z值(z-score)是样本均值与总体均值之间的差异,以标准误差为单位进行度量。其公式如下:

Z = x ˉ − μ S E Z = \frac{\bar{x}-\mu}{SE} Z=SExˉμ

Z值可以用于判断样本均值是否显著偏离总体均值。如果Z值较大,则说明样本均值与总体均值之间的差异较大,这种差异可能不是由抽样误差所致。

Z检验流程

Z检验的基本流程如下:

  1. 根据问题确定原假设 H 0 H_0 H0和备择假设 H 1 H_1 H1
  2. 确定显著性水平 α \alpha α
  3. 从总体中随机抽取一个样本,并计算该样本的样本均值 x ˉ \bar{x} xˉ和标准误差 S E SE SE
  4. 计算Z值: Z = x ˉ − μ S E Z = \frac{\bar{x}-\mu}{SE} Z=SExˉμ
  5. 根据显著性水平 α \alpha α和自由度 n − 1 n-1 n1,查找正态分布表中对应的临界值 z α / 2 z_{\alpha/2} zα/2 p p p值。
  6. 判断Z值是否落在拒绝域内(即 Z < − z α / 2 Z<-z_{\alpha/2} Z<zα/2 Z > z α / 2 Z>z_{\alpha/2} Z>zα/2),如果是,则拒绝原假设;否则,接受原假设。

总结

本文介绍了Z检验的基本概念、样本均值、总体均值、标准误差和Z值等相关知识。Z检验是一种常用的假设检验方法,可以用于判断一个样本的均值是否显著偏离总体均值。在实际应用中,需要根据问题特点选择不同的显著性水平和样本容量,以提高检验的准确性和可靠性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值