游程检验学习笔记
1. 游程检验的概念
游程(run)是指序列中连续一段相同数值的长度。游程检验(run test)是对一个二元序列(即该序列只包含两种取值)的非随机性进行检验的一种方法。
游程检验通常用于检验序列是否具有某种特殊的结构,例如:
- 是否存在周期性变化;
- 是否存在上升或下降趋势;
- 是否具有随机的性质。
游程检验通常被广泛应用于生物信息学、金融学和工业控制等领域。
2. 游程检验的步骤
游程检验通常分为以下几个步骤:
- 建立假设:根据实际问题建立相应的假设。
- 确定游程:将序列中相同的数值组成若干个游程。
- 计算游程长度:统计每个游程的长度。
- 检验游程长度是否符合假设:利用统计学方法判断游程长度的分布是否符合预期分布。
- 得出结论:根据检验结果得出相应的结论。
3. 游程分布的假设
在游程检验中,假设序列具有相同的概率分布,且给定游程长度的概率可以通过一定的方法计算得出。
常用的游程分布有:
- 伯努利分布:指只有两种可能结果的离散分布。
- 符号分布:指只有两个符号(+1 和 -1)的离散分布。
- 泊松分布:指随机事件发生的概率与时间间隔长度成正比。
4. 游程检验方法
游程检验的具体方法包括以下几种:
4.1 单样本游程检验
单样本游程检验用于检验二元序列中相同数字的游程长度是否符合预期。通常称之为 run test
。
其基本步骤为:
- 确定假设:根据实际问题建立相应的假设。
- 计算游程长度:将序列中相同的数值组成若干个游程,并统计每个游程的长度 n。
- 计算期望:根据游程分布,计算给定的数据序列中游程长度为 n 的期望 E ( n ) E(n) E(n)。
- 计算统计量:计算游程长度的标准差 σ \sigma σ,然后计算统计量 Z = R − E ( R ) σ R Z=\frac{R-E(R)}{\sigma_R} Z=σRR−E(R)。
- 比较p值:根据显著性水平,比较统计量 Z 的 p 值与显著性水平的大小关系,得出结论。
4.2 双样本游程检验
双样本游程检验用于检验两个二元序列中相同数字的游程长度是否存在差异。通常称之为 runs up and down test
。
其基本步骤为:
- 确定假设:根据实际问题建立相应的假设。
- 计算游程长度:将两个序列中相同的数值组成若干个游程,并确定每个游程的长度。
- 计算统计量:计算样本大小、成功次数、失败次数、总游程数和期望游程数等参数,然后根据相应的统计分布计算统计量 Z Z Z。
- 比较p值:根据显著性水平,比较统计量 Z 的 p 值与显著性水平的大小关系,得出结论。
5. 总结
游程检验是对二元序列非随机性进行检验的重要方法,常被用于周期性变化、上升或下降趋势等方面的研究。游程检验通常分为单样本游程检验和双样本游程检验两种方法,具体步骤包括建立假设、计算游程长度、计算统计量和比较p值等。在实际应用中,我们需要根据具体问题选择相应的游程分布和检验方法,以得出更准确的结论。