参数检验学习笔记
在统计学中,参数检验是一种通过样本数据判断总体参数是否符合某一特定假设的方法。它通常用于判断总体均值、总体比例等参数的假设是否成立。
总体均值参数的检验
单个总体均值参数的检验
假设有一个样本 X 1 , X 2 , . . . , X n X_1, X_2, ..., X_n X1,X2,...,Xn,总体均值为 μ \mu μ,总体方差为 σ 2 \sigma^2 σ2,现在需要检验总体均值是否符合某一特定值 u 0 u_0 u0。假设检验步骤如下:
-
建立假设:
- 零假设: H 0 : μ = u 0 H_0:\mu=u_0 H0:μ=u0
- 备择假设: H 1 : μ ≠ u 0 H_1:\mu\neq u_0 H1:μ=u0
-
确定显著性水平 α \alpha α,并计算检验统计量
- 检验统计量: Z = X ‾ − u 0 σ n Z=\frac{\overline{X}-u_0}{\frac{\sigma}{\sqrt{n}}} Z=nσX−u0
-
根据显著性水平 α \alpha α 和自由度 n − 1 n-1 n−1 找到对应的临界值 z α 2 z_\frac{\alpha}{2} z2α 和 − z α 2 -z_\frac{\alpha}{2} −z2α
-
判断拒绝域:如果 Z ≤ − z α 2 Z \le -z_\frac{\alpha}{2} Z≤−z2α 或者 Z ≥ z α 2 Z \ge z_\frac{\alpha}{2} Z≥z2α,则拒绝零假设;否则,不拒绝零假设。
两个总体均值参数的检验
假设有两组独立样本 X 1 , X 2 , . . . , X n 1 X_1, X_2, ..., X_{n_1} X1,X2,...,Xn1 和 Y 1 , Y 2 , . . . , Y n 2 Y_1, Y_2, ..., Y_{n_2} Y1,Y2,...,Yn2,总体均值分别为 μ 1 \mu_1 μ1 和 μ 2 \mu_2 μ2,总体方差分别为 σ 1 2 \sigma_1^2 σ12 和 σ 2 2 \sigma_2^2 σ22,现在需要检验两个总体的均值是否相同。假设检验步骤如下:
-
建立假设:
- 零假设: H 0 : μ 1 = μ 2 H_0:\mu_1=\mu_2 H0:μ1=μ2
- 备择假设: H 1 : μ 1 ≠ μ 2 H_1:\mu_1\neq\mu_2 H1:μ1=μ2
-
确定显著性水平 α \alpha α,并计算检验统计量
- 检验统计量: Z = X ‾ − Y ‾ σ 1 2 n 1 + σ 2 2 n 2 Z=\frac{\overline{X}-\overline{Y}}{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}} Z=n1σ12+n2σ22X−Y
-
根据显著性水平 α \alpha α 和自由度 n 1 + n 2 − 2 n_1+n_2-2 n1+n2−2 找到对应的临界值 z α 2 z_\frac{\alpha}{2} z2α 和 − z α 2 -z_\frac{\alpha}{2} −z2α
-
判断拒绝域:如果 Z ≤ − z α 2 Z \le -z_\frac{\alpha}{2} Z≤−z2α 或者 Z ≥ z α 2 Z \ge z_\frac{\alpha}{2} Z≥z2α,则拒绝零假设;否则,不拒绝零假设。
总体比例参数的检验
假设有一个二项分布样本 X 1 , X 2 , . . . , X n X_1, X_2, ..., X_n X1,X2,...,Xn,总体比例为 p p p,现在需要检验总体比例是否符合某一特定值 p 0 p_0 p0。假设检验步骤如下:
-
建立假设:
- 零假设: H 0 : p = p 0 H_0:p=p_0 H0:p=p0
- 备择假设: H 1 : p ≠ p 0 H_1:p\neq p_0 H1:p=p0
-
确定显著性水平 α \alpha α,并计算检验统计量
- 检验统计量: Z = p ^ − p 0 p 0 ( 1 − p 0 ) n Z=\frac{\hat{p}-p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} Z=np0(1−p0)p^−p0
-
根据显著性水平 α \alpha α 和自由度 n − 1 n-1 n−1 找到对应的临界值 z α 2 z_\frac{\alpha}{2} z2α 和 − z α 2 -z_\frac{\alpha}{2} −z2α
-
判断拒绝域:如果 Z ≤ − z α 2 Z \le -z_\frac{\alpha}{2} Z≤−z2α 或者 Z ≥ z α 2 Z \ge z_\frac{\alpha}{2} Z≥z2α,则拒绝零假设;否则,不拒绝零假设。
小结
参数检验是统计学中的一种重要方法,用于判断总体参数是否符合某一特定假设。在进行参数检验时,需要建立假设、计算检验统计量、找到对应的临界值以及判断拒绝域。具体步骤因不同假设和样本类型而异,需要根据具体情况来灵活运用。