【空间光-光纤耦合技术03】光纤中的线性偏振模式LP模

本部分的学习参考柯熙政老师的《无限光通信中的空间光——光纤耦合技术》及欧攀老师的《高等光学仿真(MATLAB版)》,为自学笔记,博客末尾附上了在学习过程中参考的博客内容。

        承接上一章的内容,这一章基于对LP的理解进行补充和完善。

LP模的简并及其特征方程

        通过上一章内容的学习,我们已经知道了LP模的简并度及其模式的特征方程:

        注意:此处下标变为了lm,不再是之前内容中的mn。

        l=0时,光纤中只存TE模和TM模。当l\neq 0时,出现的是E_zH_z共存的EH模和HE模。为了区分,将特征方程右端取正号时对应的模式叫BH模,取负号对应的模式称HE模。

        下面对它们的特征方程进行补充。上一章我们提到了:

(\frac{1}{U}\frac{J'_{\mu }(U)}{J_{\mu }(U)}+\frac{1}{W}\frac{K'_{\mu }(W)}{K_{\mu }(W)})(\frac{n_1^{2}}{U}\frac{J'_{\mu }(U)}{J_{\mu }(U)}+\frac{n_{2}^2}{W}\frac{K'_{\mu }(W)}{K_{\mu }(W)})=\mu ^{2}(\frac{n_1^{2}}{n_{2}^2}\frac{1}{U^{2}}+\frac{1}{W^2})(\frac{1}{U^{2}}+\frac{1}{W^2}) ...(2-2)

        在这章中,下标lm进行替换,可得:

(\frac{1}{U}\frac{J'_{l}(U)}{J_{l }(U)}+\frac{1}{W}\frac{K'_{l}(W)}{K_{l}(W)})(\frac{n_1^{2}}{U}\frac{J'_{l }(U)}{J_{l}(U)}+\frac{n_{2}^2}{W}\frac{K'_{l}(W)}{K_{l}(W)})=l^{2}(\frac{n_1^{2}}{n_{2}^2}\frac{1}{U^{2}}+\frac{1}{W^2})(\frac{1}{U^{2}}+\frac{1}{W^2})

        由于W^2=V^2-U^2=(n_1^2-n_2^2)k_0^2a^2-U^2,其中a为光波导的横向特征尺寸。则上式可以看成一个仅包含U或W的方程,。对于弱导光纤,认为纤芯与包层折射率极小n_1/n_2\rightarrow 1,可近似认为n_1/n_2=1。因此上式化简为:

(\frac{1}{U}\frac{J'_{l}(U)}{J_{l }(U)}+\frac{1}{W}\frac{K'_{l}(W)}{K_{l}(W)})=\pm l(\frac{1}{U^{2}}+\frac{1}{W^2}) ...(3-1)

        这就是弱导光纤的近似特征方程

TE_0m和TM_0m模

        光纤中只存在l=0的TE模和TM模。这是因为根据光纤矢量解表达式知,对于TE模,必有Ez=0,因此有常数A=0,代入式得

\beta lB(1/U^2+1/W^2)=0

        式中(1/U^2+1/W^2)不能为零,相位常数\beta及常数B均不可能为零,因此只能使l=0。这样就得出结论,光纤中的TE模只能在l=0的情况下才能存在。同样,可以证明光纤中的TM模也只能在l=0的情况下才能存在。

        在特征方程(3-1)中令l=0,就可得到TE模和TM模的特征方程:

(\frac{1}{U}\frac{J'_{0}(U)}{J_{0 }(U)}+\frac{1}{W}\frac{K'_{0}(W)}{K_{0}(W)})=0

        利用Bessel函数的递推公式

J'_0(U)=-J_1(U), K'_0(W)=-K_1(W)

        可把上式变换为

(\frac{1}{U}\frac{J_{1}(U)}{J_{0 }(U)}+\frac{1}{W}\frac{K_{1}(W)}{K_{0}(W)})=0

        这就是TE模和TM模共同的特征方程。

EH模和HE模

        当l\neq 0时,不能出现TE模和TM模,而只能是Ez和Hz同时存在,其中Ez所占的分量大时即为EH模(将特征方程右端取正号),反之为HE模(将特征方程右端取负号)。

        因此,EH模的特征方程为

(\frac{1}{U}\frac{J'_{l}(U)}{J_{l }(U)}+\frac{1}{W}\frac{K'_{l}(W)}{K_{l}(W)})= l(\frac{1}{U^{2}}+\frac{1}{W^2})

        HE模的特征方程为

(\frac{1}{U}\frac{J'_{l}(U)}{J_{l }(U)}+\frac{1}{W}\frac{K'_{l}(W)}{K_{l}(W)})= -l(\frac{1}{U^{2}}+\frac{1}{W^2})

        应用Bessel函数递推公式

J'_l(U)=\frac{1}{U}J_l(U)-J_{l+1}(U)=-\frac{1}{U}J_l(U)+J_{l-1}(U)

K'_l(W)=\frac{1}{W}K_l(W)-K_{l+1}(W)=-\frac{1}{W}K_l(W)+K_{l-1}(W)

        简化后的特征方程为:

        EH模:

\frac{1}{U}\frac{J_{l+1}(U)}{J_{l }(U)}+\frac{1}{W}\frac{K_{l+1}(W)}{K_{l}(W)}= 0

        HE模:

\frac{1}{U}\frac{J_{l-1}(U)}{J_{l }(U)}-\frac{1}{W}\frac{K_{l-1}(W)}{K_{l}(W)}= 0​​​​​​​

        综上所述,在光纤中可存在4种类型的模式,分别为TE模、TM模、EH模、HE模。其中TE模、TM模只在l=0时存在,而BH模、HE模在l>0时存在。各模式的特征方程可化为仅含一个未知量U(或W)的方程。在给定工作波长情况下,对应于一个L,Bessel函数就会有一系列解,求出的每一个U值的解就对应着一个模式。例如,对于EH模,对应一个l的Bessel函数第m个根所相应的U值解就代表了EH_lm模。因此,若光纤归一化频率V足够大时,光纤中可存在一系列的TE模、TM模和一系列的EH模、HE模。

LP模的截止条件

        如前所述,LP_l,m 模是由弱导条件下简并模式HE_l+1,m模和EH_l-1,m模组合而成,它们的传播常数\beta相同,特征方程等价。HE_l+1,m模和EH_l-1,m模的截止条件就是LP_lm模的截止条件。根据Bessel函数的渐进关系式,可以写出在W\rightarrow 0时,3种情况下LP_lm模的特征方程如下:

        因此在模式截止时,上面3个方程的左边等于0,利用这一判据得到这3种LP模式的截止条件为:

LP模归一化截止频率的数值求解

        LP模归一化截止频率是指在光纤中,当某一LP模式的传输特性开始显著下降,即该模式即将无法再维持稳定传输时的归一化频率值。这个频率值标志着该模式在光纤中的有效传输范围。LP模归一化截止频率就是满足上述截止条件式的根,即不同阶数的Bessel函数的根。

        Bessel函数的求解已在上一章给出,可以用matlab中的fzero()函数标注出根。

​​​​​​​

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值