前言
参考书籍:
《机器视觉技术与应用实战》王颖娴等人著
学习学习,快速掌握!
一、模板匹配
1.1 基本概念
- 模板匹配就是特征匹配。分为:高精度匹配和快速匹配。
- 常用于:定位、计数和判断有无等。
1.2 原理
- 使用图像的“边缘特征”作为模板,按照预设的参数确定搜索空间,在图像中搜索与模板相似的目标。
1.3 高精度匹配&快速匹配
- 高精度匹配的精度高,但耗时比快速匹配久。设置特征的时候会更精细。
二、快速匹配
2.1 设置
基本参数:
关注:形状和屏蔽区。
模板配置:
尺度特征:值越小,特征的轮廓越精细
对比度阈值:边缘轮廓和背景的对比程度。
运行参数
- 最小匹配分数:相似度。
- 匹配极性:特征图像到背景的颜色过渡情况。
- 不考虑极性:
- 考虑极性:
- 角度范围:默认-180°~180°。
- 尺度范围:放大比例。默认:1 。
- 最大重叠率:用于多个检测目标之间重叠的情况。默认0~100【值越大,允许的重叠比例越大】
- 排序类型:针对视野内匹配到的目标不止一个时。
- 按分数降序:按照特征匹配的得分降序排序。
- 按角度降序:按照当前结果中相对角度偏移降序排序。
- 按X由小到大排序:按照匹配框中心点(X,Y)中的X排序。
- 阈值类型:匹配阶段,对比度阈值模式
- 自动阈值:依据目标图像进行自适应
- 模板阈值:以模板的对比度阈值作为匹配阶段的对比度阈值。
- 手动阈值:以用户设定的阈值作为查找的阈值参数
- 延拓阈值:特征在图像边缘,显示不完整时。特征缺失的部分,相对于完整的特征的比例。
- 轮廓使能:显示模板轮廓特征点。不选,则只会显示检测框。
2.2 注意点
如果图像源是彩色图的话,需要将“彩图转为灰度图”。因为:快速匹配的模板创建是需要灰度图。【如下图:】
更新时间
- 2024.08.08:创建。