P1824 进击的奶牛题解

题目

Farmer John 建造了一个有N(2≤N≤105) 个隔间的牛棚,这些隔间分布在一条直线上,坐标是x_{1},x_{2},\cdots ,x_{N}(0≤x_{i}​≤10^{9})。

他的C(2≤C≤N)头牛不满于隔间的位置分布,它们为牛棚里其他的牛的存在而愤怒。为了防止牛之间的互相打斗,Farmer John想把这些牛安置在指定的隔间,所有牛中相邻两头的最近距离越大越好。那么,这个最大的最近距离是多少呢?

输入输出格式

输入格式

第1行:两个用空格隔开的数字N和C。

第2∼N+1行:每行一个整数,表示每个隔间的坐标。

输出格式

输出只有一行,即相邻两头牛最大的最近距离。

输入输出样例

输入样例

5 3
1
2
8
4
9

输出样例

3

解析

这道题目还是按照套路构造条件,可以把c头牛全部安置进这些隔间使相邻两头牛距离不超过x。于是先得检验单调性:可以看出,x越小,就越可能把所有牛合法安置;当x比较大时,牛棚就不够安置了。于是不难想象,存在一个分界线ans,x大于ans时没有合法安置方案,x小于等于ans时,则一定存在合法安置方案。

此题目只有一个限制,即任意两个相邻安置点距离不能小于x。于是可以采用感受到一种贪心算法:从最左端开始,每隔超过x的距离,能安置就安置,最后只要看遍历所有点以后总共安置了多少头牛即可。

#include<iostream>
#include<algorithm>
#define maxn 1000010
#define inf 1e9
using namespace std;
int a[maxn],n,c;
bool p(int d){
	int k=0,last=-inf;//last记录上一头牛的安置坐标 
	for(int i=1;i<=n;i++){
		if(a[i]-last>=d){//能安置就立刻安置 
			last=a[i];
			k++;
		}
	}
	return k>=c;
}
int main(){
	cin>>n>>c;
	for(int i=1;i<=n;i++){
		cin>>a[i];
	}
	sort(a+1,a+1+n);
	int l=0,r=inf,ans,mid;
	while(l<=r){
		if(p(mid=l+r>>1)){
			ans=mid;
			l=mid+1;
		}
		else{
			r=mid-1;
		}
	}
	cout<<ans;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

互联网的猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值