视觉里程计- 位姿

        SLAM中的位姿概念对新手很难,这里讨论下。首先放出一张图,下文会反复说道这张图。

        注意到位姿节点之间的变换并不是位姿,之前一直有误解;一般地有如下概念:

路标节点也就是观测方程【数学形式下见】的观测值,也就是特征点的像素坐标[u,v],或者该帧相机坐标系下的3d坐标[x,y,z];

位姿节点也就是运动方程【数学形式下见】的输出值。例如:上图x1、x2、x3、X4对应位姿为:Tcw1、Tcw2、Tcw3、Tcw4。这里的Tcw表示对应帧相机坐标系->世界坐标系的变换;比如:在x1处看到了路标点p1,在x2处也看到了路标点p1(当然是通过特征匹配才知道再次看到)考虑以下两种情况:

1>  x1对应第一帧,x2对应第二帧

        那么x1的相机坐标系即为:世界坐标系;那么第一帧位姿我们直接初始化为:

        第二帧我们要:通过opencv中solvePNPransac(points3d_1, points2d_2,R,t);来求解,points3d_1对应的是世界坐标系下的3D点(在这种情形,第一帧相机坐标系也就是世界坐标系,所以第一帧相机坐标系下的3D点), points2d_2是第二帧像素点(设第二帧对应3D路标点(在第二帧相机坐标系下)为:points3d_2)。

     在这里[左乘]:

                                                       Tcw2 * points3d_1 = points3d_2

     同时必须知道:(假设两帧之间的变换 T12,也就是 位姿变换):

                                                                   T12 * Tcw1 = Tcw2

2> x2对应第2帧,x3对应第3帧

        接着,我们再次想通过solvePNPransac(points3d_2_, points2d_3,R,t)来求解Tcw3,points3d_2_ (世界坐标系)肯定不是 points3d_2(相机坐标系),所以在第一种情形你就应该提前将points3d_2 从它所在的相机坐标系映射到世界坐标系,故:

                                                                 points3d_2_ = Tcw2.inverse() * points3d_2

我们得出流程图如下图(多年前VISO画的):

观测模型:具体见下

运动模型:具体见下

两个模型与G2O结合了解说明;

位姿,即:位置和姿态,位置对应位移,姿态对应旋转。

        对于上述位姿图,我们假设 x1 对应参考帧 ref_(同时假设是第一帧),x2对应 当前帧curr_(同时假设是第二帧);我们通过......最后通过opencv中API solvePNPransac();求出的R|t 其实是Tcw;

  • Tcw指的是:当前帧与世界坐标系之间的变换;
  • Trw指的是:参考帧与世界坐标系之间的变换。那么待估计的两帧之间的变换为:Tcr,构成左乘关系:

                                                                                       Tcr, s.t. Tcr * Trw = Tcw 

  • P_camera_curr 指的是:当前帧3D路标点 (相机坐标系)
  • P_world_ref      指的是:参考帧3D路标点    (世界坐标系)

                                                                               P_camera_curr = Tcw*P_world_ref

        这里 opencv中的 solvePNPransac 求出来的是 T = (R|t);依据上述公式:所以你要将当前帧3D路标点转化到世界坐标系,应该是左乘:Tcw.inverse() * P_camera_curr = P_world_ref;请看以下代码【就是匹配,第一帧相机坐标系当作世界坐标系,第二帧就是相机坐标系,重点关注代码 81行 - 124行】:

(代码依赖opencv和g2o)

#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <Eigen/Core>
#include <Eigen/Geometry>
#include <g2o/core/base_vertex.h>
#include <g2o/core/base_unary_edge.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/optimization_algorithm_levenberg.h>
#include <g2o/solvers/csparse/linear_solver_csparse.h>
#include <g2o/types/sba/types_six_dof_expmap.h>
#include <chrono>

using namespace std;
using namespace cv;

#include"sophus\se3.h"
#include"sophus\so3.h"

void find_feature_matches(
    const Mat& img_1, const Mat& img_2,
    std::vector<KeyPoint>& keypoints_1,
    std::vector<KeyPoint>& keypoints_2,
    std::vector< DMatch >& matches);

// 像素坐标转相机归一化坐标
Point2d pixel2cam(const Point2d& p, const Mat& K);

void bundleAdjustment(
const vector<Point3f> points_3d,
const vector<Point2f> points_2d,
const Mat& K,
Mat& R, Mat& t
);

int main()
{
    //-- 读取图像
    Mat img_1 = imread("color/b.png", CV_LOAD_IMAGE_COLOR);
    Mat img_2 = imread("color/c.png", CV_LOAD_IMAGE_COLOR);

    vector<KeyPoint> keypoints_1, keypoints_2;
    vector<DMatch> matches;
    find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches);
    cout << "一共找到了" << matches.size() << "组匹配点" << endl;

    // 建立3D点
    Mat depth_1 = imread("depth/b.pgm", CV_LOAD_IMAGE_UNCHANGED);       // 深度图为16位无符号数,单通道图像
    Mat depth_2 = imread("depth/c.pgm", CV_LOAD_IMAGE_UNCHANGED);       // 深度图为16位无符号数,单通道图像
                                                                   //Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);
    Mat K = (Mat_<double>(3, 3) << 518.0, 0, 325.5, 0, 519.0, 253.5, 0, 0, 1);
    vector<Point3f> pts_3d1;//世界坐标点
    vector<Point3f> pts_3d2;
    vector<Point2f> pts_2d;//相机坐标系点(归一化???)
                           //【注:】这里表示同一个3D点在两幅图中的图二对应像素点,本来就是求世界坐标系下的r、t
    for (DMatch m : matches)
    {
        //取出深度值,此时彩图和深度图已经对齐
        ushort d1 = depth_1.ptr<unsigned short>(int(keypoints_1[m.queryIdx].pt.y))[int(keypoints_1[m.queryIdx].pt.x)];
        ushort d2 = depth_2.ptr<unsigned short>(int(keypoints_2[m.trainIdx].pt.y))[int(keypoints_2[m.trainIdx].pt.x)];
        if ((d1 == 0) || (d2 == 0))   // bad depth
            continue;
        float dd1 = d1 / 1.0;
        float dd2 = d2 / 1.0;
        Point2d p1 = pixel2cam(keypoints_1[m.queryIdx].pt, K); // 相机坐标系归一化平面:p1的形式 [x/z,y/z,1]
        Point2d p2 = pixel2cam(keypoints_2[m.trainIdx].pt, K);
        pts_3d1.push_back(Point3f(p1.x*dd1, p1.y*dd1, dd1));//乘以Z就得到形式  [x,y,z]?????左边相机为参考,把他当作世界坐标系,确实是这样的
        pts_3d2.push_back(Point3f(p2.x*dd2, p2.y*dd2, dd2));
        pts_2d.push_back(keypoints_2[m.trainIdx].pt);//图二中的2D像素坐标[u,v]
    }

    cout << "3d-2d pairs: " << pts_3d1.size() << endl;

    Mat r, t;
    // 调用OpenCV 的 PnP 求解r t,可选择EPNP,DLS等方法
    //solvePnP(pts_3d, pts_2d, K, Mat(), r, t, false);
    //solvePnP(pts_3d1, pts_2d, K, Mat(), r, t, false, SOLVEPNP_EPNP);

    cv::solvePnPRansac(pts_3d1, pts_2d, K, Mat(), r, t, false, 100, 1.0, 0.99);

    Mat R;
    cv::Rodrigues(r, R); // r为旋转向量形式,用Rodrigues公式转换为矩阵
                         //RR = -R.inv();
    cout << "R=" << endl << R << endl;
    cout << "t=" << endl << t << endl;
    //************************************************************************************************
    // 李群
    //************************************************************************************************
    Sophus::SE3 T_se3 = Sophus::SE3(
        Sophus::SO3(r.at<double>(0, 0), r.at<double>(1, 0), r.at<double>(2, 0)),
        Sophus::Vector3d(t.at<double>(0, 0), t.at<double>(1, 0), t.at<double>(2, 0))
    );
    cout << "T_se3 = " << T_se3.matrix() << endl;
    //************************************************************************************************
    // 欧氏群
    //************************************************************************************************
    Eigen::Isometry3d T_Isometry3d = Eigen::Isometry3d::Identity();
    //Eigen::AngleAxisd rot_vec(r.at<double>(0, 0), r.at<double>(1, 0), r.at<double>(2, 0));
    Eigen::Vector3d trans(t.at<double>(0, 0), t.at<double>(1, 0), t.at<double>(2, 0));
    Eigen::Matrix<double, 3, 3> R_;
    R_ << R.at<double>(0,0), R.at<double>(0,1), R.at<double>(0,2),
          R.at<double>(1,0), R.at<double>(1,1), R.at<double>(1,2),
          R.at<double>(2,0), R.at<double>(2,1), R.at<double>(2,2);
    T_Isometry3d.rotate(R_);
    T_Isometry3d.pretranslate(trans);
    cout << " T_Isometry3d = " << T_Isometry3d.matrix() << endl;

    cout << "calling bundle adjustment" << endl;
    bundleAdjustment(pts_3d1, pts_2d, K, R, t);
    //************************************************************************************************
    // 计算误差:error = point3d_curr -( R * point3d_ref + t )
    //************************************************************************************************
    for (int i = 0; i < 20; i++)
    {
        cout << " pts_3d1 =  " << pts_3d1[i] << endl;
        cout << " pts_3d2 =  " << pts_3d2[i] << endl;
        cout << " error " <<
            (Mat_<double>(3, 1) << pts_3d2[i].x, pts_3d2[i].y, pts_3d2[i].z)
            - R*((Mat_<double>(3, 1) << pts_3d1[i].x, pts_3d1[i].y, pts_3d1[i].z)) - t
            << endl;
        cout << endl;
    }

    waitKey(0);
    return 0;
}

void find_feature_matches(const Mat& img_1, const Mat& img_2,
    std::vector<KeyPoint>& keypoints_1,
    std::vector<KeyPoint>& keypoints_2,
    std::vector< DMatch >& matches)
{
    //-- 初始化
    Mat descriptors_1, descriptors_2;
    // used in OpenCV3
    Ptr<FeatureDetector> detector = ORB::create(1000);
    Ptr<DescriptorExtractor> descriptor = ORB::create();
    // use this if you are in OpenCV2
    // Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );
    // Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );
    Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
    //-- 第一步:检测 Oriented FAST 角点位置
    detector->detect(img_1, keypoints_1);
    detector->detect(img_2, keypoints_2);

    //-- 第二步:根据角点位置计算 BRIEF 描述子
    descriptor->compute(img_1, keypoints_1, descriptors_1);
    descriptor->compute(img_2, keypoints_2, descriptors_2);

    //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
    vector<DMatch> match;
    // BFMatcher matcher ( NORM_HAMMING );
    matcher->match(descriptors_1, descriptors_2, match);

    //-- 第四步:匹配点对筛选
    double min_dist = 10000, max_dist = 0;

    //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
    for (int i = 0; i < descriptors_1.rows; i++)
    {
        double dist = match[i].distance;
        if (dist < min_dist) min_dist = dist;
        if (dist > max_dist) max_dist = dist;
    }

    printf("-- Max dist : %f \n", max_dist);
    printf("-- Min dist : %f \n", min_dist);

    //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
    for (int i = 0; i < descriptors_1.rows; i++)
    {
        if (match[i].distance <= max(2 * min_dist, 30.0))
        {
            matches.push_back(match[i]);
        }
    }



    Mat img_match;
    Mat img_goodmatch;
    drawMatches(img_1, keypoints_1, img_2, keypoints_2, match, img_match);
    drawMatches(img_1, keypoints_1, img_2, keypoints_2, matches, img_goodmatch);
    namedWindow("所有匹配点对", CV_WINDOW_NORMAL);
    imshow("所有匹配点对", img_match);
    namedWindow("优化后匹配点对", CV_WINDOW_NORMAL);
    imshow("优化后匹配点对", img_goodmatch);
}

Point2d pixel2cam(const Point2d& p, const Mat& K)// [u,v,1] - > [x/z, y/z, 1]
{
    return Point2d
    (
        (p.x - K.at<double>(0, 2)) / K.at<double>(0, 0),
        (p.y - K.at<double>(1, 2)) / K.at<double>(1, 1)
    );
}


void bundleAdjustment(
const vector< Point3f > points_3d,
const vector< Point2f > points_2d,
const Mat& K,
Mat& R, Mat& t)
{
// 初始化g2o
typedef g2o::BlockSolver< g2o::BlockSolverTraits<6, 3> > Block;  // pose 维度为 6, landmark 维度为 3
Block::LinearSolverType* linearSolver = new g2o::LinearSolverCSparse<Block::PoseMatrixType>(); // 线性方程求解器
Block* solver_ptr = new Block(linearSolver);     // 矩阵块求解器
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
g2o::SparseOptimizer optimizer;
optimizer.setAlgorithm(solver);

// vertex
g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap(); // camera pose
Eigen::Matrix3d R_mat;
R_mat <<
R.at<double>(0, 0), R.at<double>(0, 1), R.at<double>(0, 2),
R.at<double>(1, 0), R.at<double>(1, 1), R.at<double>(1, 2),
R.at<double>(2, 0), R.at<double>(2, 1), R.at<double>(2, 2);
pose->setId(0);
pose->setEstimate(g2o::SE3Quat(
R_mat,
Eigen::Vector3d(t.at<double>(0, 0), t.at<double>(1, 0), t.at<double>(2, 0))
));
optimizer.addVertex(pose);

int index = 1;
for (const Point3f p : points_3d)   // landmarks
{
g2o::VertexSBAPointXYZ* point = new g2o::VertexSBAPointXYZ();
point->setId(index++);
point->setEstimate(Eigen::Vector3d(p.x, p.y, p.z));
point->setMarginalized(true); // g2o 中必须设置 marg 参见第十讲内容
optimizer.addVertex(point);
}

// parameter: camera intrinsics
g2o::CameraParameters* camera = new g2o::CameraParameters(
K.at<double>(0, 0), Eigen::Vector2d(K.at<double>(0, 2), K.at<double>(1, 2)), 0
);
camera->setId(0);
optimizer.addParameter(camera);

// edges
index = 1;
for (const Point2f p : points_2d)
{
g2o::EdgeProjectXYZ2UV* edge = new g2o::EdgeProjectXYZ2UV();
edge->setId(index);
edge->setVertex(0, dynamic_cast<g2o::VertexSBAPointXYZ*> (optimizer.vertex(index)));
edge->setVertex(1, pose);
edge->setMeasurement(Eigen::Vector2d(p.x, p.y));
edge->setParameterId(0, 0);
edge->setInformation(Eigen::Matrix2d::Identity());
optimizer.addEdge(edge);
index++;
}

chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
optimizer.setVerbose(true);
optimizer.initializeOptimization();
optimizer.optimize(100);
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>> (t2 - t1);
cout << "optimization costs time: " << time_used.count() << " seconds." << endl;

cout << endl << "after optimization:" << endl;
cout << "T=" << endl << Eigen::Isometry3d(pose->estimate()).matrix() << endl;
}

        这里我们只关心运动,不关心结构。换句话说,只要通过特征点成功求出了运动,我们就不再需要这帧的特征点了。这种做法当然会有缺陷,但是忽略掉数量庞大的特征点可以节省许多的计算量。然后,在 t 到 t + 1 时刻,我们又以 t 时刻为参考帧,考虑 t 到 t + 1 间的运动关系。如此往复,就得到了一条运动轨迹。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黄家驹beyond

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值