SLAM学习——视觉里程计中位姿估计,PnP、ICP问题的本质描述

SLAM中的前端也称为视觉里程计,本质在于利用计算计算机视觉图像中的特征点的距离,进而估算相机的旋转R和位移t,即计算相机的姿态变化。

根据采集的相机的特点不同,可以分成一下几类:

  • 2D-2D 单目摄像机,也称为对极几何问题
  • 3D-2D 已知特征点的3D世界坐标和图片中的2D坐标,通常是RGBD相机/双面相机拍摄的图片,该问题可以使用PnP来求解
  • 3D-3D 已知

下面分类介绍:

1)2D-2D对极几何问题

2)3D-2D PnP问题

PNP(Perspective N Points)问题首先于1981年由Fishler和Bolles提出,类似的问题可以追溯到1841年摄影测量学领域。所谓PNP问题,就是指如下的物体定位问题:假定摄像机为小孔模型且已标定好,摄取一幅在物体坐标系下坐标已知的N个空间点的像,且这N个图像点的坐标已知,确定这N个空间点在摄像机坐标系下的坐标。
在SLAM中,对于匹配的特征点来说,前一帧中的坐标存在于我们已经构建好的地图中,相当于世界坐标系坐标。后一帧中对特征点重新拍摄了,获取了2D坐标,PnP需要计算特征点在后一帧中的3D坐标,

这个算法的输入是一组点的3D世界坐标和2D像素坐标,输出是相机的旋转矩阵®和平移矩阵(t),比较经典的是P3P算法,即利用3对特征点来求相机位姿。
在这里插入图片描述
P3P 需要利用给定的三个点的几何关系。它的输入数据为三对 3D-2D 匹配点。记 3D点为 A; B; C, 2D 点为 a; b; c,其中小写字母代表的点为大写字母在相机成像平面上的投影,如图 所示。此外, P3P 还需要使用一对验证点,以从可能的解出选出正确的那一个(类似于对极几何情形)。记验证点对为 D − d,相机光心为 O。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值