数学分析就是研究实数集上的函数,其中,实数(Real Numbers)是数学分析的核心,在数轴上完美地连接了整数、有理数和无理数,为我们描述连续现象提供了基础。本文将从以下七个方面,结合数学语言,系统地探讨实数的性质。
在学习之前,我们会给出很多高等数学的抽象定义,如环、域、全序关系,请不要害怕这种抽象性,因为抽象往往带来的是定义的简洁,为了表明某种数学对象归属于该抽象概念,我们只需要对这简单几条定义进行验证即可,这会带来一种站在高处、纵览全局之美的满足感。
一、实数的表示法:十进制小数表示
十进制展开
在小学和初高中的学习生活中,我们已经很熟悉实数的表示方式,我们用十进制小数,作为实数的“样子”,用严谨的数学语言来说,任意实数 x 可以表示为:
- 其中
是整数部分,
是小数部分,
- 我们使用的是十进制,因此满足
。
我们已经知道,其十进制展开要么是有限的,要么是循环的;而无理数的小数展开是无限不循环的。
规范小数
我们可能会注意到,在实数的十进制表示中,我们常常遇到末尾无限循环为 9 的情况。这种情况其实与循环前的小数部分的数值相同,只不过表达方式不同。例如,0.999…=1。
为任意事物施加一个唯一的定义是有益的,为了避免这种表达上的模糊,数学中通常会采用 规范小数 和 不规范小数 的区分:
- 规范小数(standard decimal representation)是指小数点后非零部分是有限的或无限循环的,并且不以 9 无限循环结尾。例如 1.25 或 0.333…(即 1/3 )。
- 不规范小数 是指末尾无限循环为 9 的形式,如 0.999,通常会转化为其相等的规范小数形式,如 111。
正规表示
为了将每个实数唯一的表示,我们将每一个实数都定义为无限小数,这样的表示就是实数的正规表示:
- 有限小数:例如 0.75,可以写为 0.75000…,表示它的无限小数部分是以零循环做尾。
- 无限循环小数:例如
,即小数部分是无限循环的 333,可以写作 0.33333…。
- 无限不循环小数:例如
,它的小数部分是无限且不重复的。
二、实数的大小
定义
有了实数的正规表示之后,我们可以定义实数的大小关系,
通过它们的无限小数展开来精确比较。
对于任意两个实数 x,y∈R,假设它们的十进制小数表示分别为:
其中 和
是两者的十进制展开的各个数字。我们可以通过两步定义它们的大小关系:
-
整数部分比较:首先比较 x 和 y 的整数部分,即 a0 和 b0:
- 若
,则
;
- 若
,则
;
- 若
,则进入下一步,继续比较小数部分。
- 若
-
小数部分比较:我们从 a1 和 b1 开始,逐位比较它们的数字,对任意正整数n,从1开始,比较各个位上的数字,相同,则继续比较下一位,直到找到不同的位n;若各个位置上的数均相同,则相等。
若 ,则
;
若 ,则
。
若,则
,N为任意位置。
为了深入理解大小关系和它的性质,我们先定义(Relation)这一概念,为理解大小关系的定义找到准备工具:
二元关系
二元关系 是在两个集合之间定义的关系,通常用有序对(a,b)表示。它具有反射性、对称性、传递性等基本性质。
- 反射性(Reflexivity):若对于所有 a∈A,有 (a,a)∈R,则 R 是反射的。即 a 与自身具有关系。
- 对称性(Symmetry):若对于所有 a,b∈A,有 (a,b)∈R 时,必有 (b,a)∈R,则 R 是对称的。即如果 a 与 b 有关系,那么 b 也与 a 有关系。
- 传递性(Transitivity):若对于所有 a,b,c∈A,有 (a,b)∈R 且 (b,c)∈R,则必有 (a,c)∈R,则 R 是传递的。即如果 a 与 b 有关系,且 b 与 c 有关系,那么 a 也与 c 有关系。
全序关系
偏序关系 中,元素之间的关系并不一定是线性的。偏序关系满足反射性、反对称性和传递性,但并不要求任意两个元素之间都有可比性。例如,集合 A={a,b,c} 上的偏序关系可能只规定 a≤b 和 b≤c,但并不规定 a 和 c 之间的大小关系。因此,偏序关系的元素不必彼此可比。
然而,实数的大小关系是 全序的,即它不仅满足反射性、对称性和传递性,还满足了 任意两个实数之间都有大小关系,这正是实数集合的 线性 特性。它是实数集合的一个独特性质,使得我们可以在实数集上实现有序的排列和比较。
实数大小关系
实数的大小关系,也是一种二元关系和全序关系,根据以上内容可知,因此满足以下性质:
- 反对称性:若 x≤y 且 y≤x,则 x = y;
- 传递性:若 x≤y 且 y≤z,则 x≤z;
- 线性(三歧性):对于任意 x,y∈R,必定有 x<y、x=y 或 x>y。
这种次序关系是定义区间(如 (a, b)、[a, b])的基础。
三、实数的四则运算:保证封闭性
在前面的讨论中,我们定义了实数的表示法以及实数的大小关系,但这些定义仅限于实数的描述和次序。为了进一步深入理解实数的结构,我们需要将常用的代数运算(如加法和乘法)引入其中,并探讨它们在实数集中的性质。
实数的加法与乘法满足以下代数性质,而这些性质使得实数集合 R 形成了一个 域(Field)的结构,也称为一个交换域(Commutative Field),域的背景保证了“实数算完还是实数”,运算结果不会跑出实数。
加法的运算性质
对于任意两个实数 x,y∈R,其加法运算定义为:
x + y = z
其中 z 是通过在实数集内的合适规则和表示法下计算得出的结果,z也是实数。加法具有以下性质:
- 交换律:对于任意实数 x,y∈R,有:x+y=y+x
-
结合律:对于任意实数 x,y,z∈R,有:
(x+y)+z=x+(y+z) -
零元存在性:存在一个特定的实数 0∈R,使得对于任意实数 x∈R,都有:
x+0=x -
负元素存在性:对于每个实数 x∈R,存在一个实数 −x∈R,使得:
x+(−x)=0
这些加法性质确保了实数集合在加法运算下形成了一个交换群结构,并且使得加法运算具有封闭性(任意两个实数相加仍是实数)。
乘法的运算性质
对于任意两个实数 x,y∈R,其乘法运算定义为:
其中 z 是通过实数乘法规则计算得到的结果。乘法具有以下性质:
-
交换律:对于任意实数 x,y∈R,有:
x×y=y×x -
结合律:对于任意实数 x,y,z∈R,有:
(x×y)×z=x×(y×z) -
乘法单位元存在性:存在一个特定的实数 1∈R,使得对于任意实数 x∈R,都有:
-
逆元存在性(非零实数的倒数):对于每个非零实数 x∈R,存在一个实数 1/x ∈R,使得:
这些乘法性质确保了实数集合在乘法运算下形成了一个交换群结构(除了零元素外)。并且,实数的乘法运算具有封闭性,即两个实数相乘的结果仍然是实数。
加法与乘法的相互关系
加法和乘法之间也具有重要的相互关系,这通过分配律体现:
-
左分配律:对于任意实数 x,y,z∈R,有:
-
右分配律:对于任意实数 x,y,z∈R,有:
结合加法和乘法的代数结构:域(Field)
通过以上的定义和代数性质,实数集合不仅满足加法和乘法的基本性质,还具有一个重要的代数结构:域(Field)。具体来说,实数集 R 是一个交换域,这意味着它在加法和乘法下形成了交换群,并且乘法具有逆元。更详细地,实数的加法与乘法满足以下域的定义:
- 加法与乘法交换:加法和乘法运算都满足交换律。
- 加法与乘法结合:加法和乘法分别满足结合律。
- 加法和乘法的分配律:加法与乘法之间满足分配律。
- 加法和乘法的单位元:加法具有零元 0,乘法具有单位元 1,保证了对原数作用后,保持原数不变。
- 乘法逆元:每个非零实数
都有一个加法逆元
,乘法逆元
。
这种代数结构使得实数不仅具有运算闭合性和可操作性,还为代数方程的求解提供了强大的基础。交换域的性质确保了实数的加法和乘法可以满足我们日常使用的各种代数规则,这些规则广泛应用于数学分析、代数、微积分等多个领域。
四、实数的阿基米德性
实数的阿基米德性可以用以下表达式精确描述:
对于任意 x∈R 和正数 y>0 ,总存在一个正整数 n∈N,使得:
.
这一性质表明,实数的范围是无穷延展的,整数可以“任意逼近”或超过任何实数。
换句话说,任何一个正实数 y 都能在足够大的倍数下超越任意给定的实数 x。、
证明
形式化推导如下:假设 对任意 n 成立,则
的上界将违反实数的完备性(矛盾),具体的证明需要给出确界定义和性质后才可以进行。
为什么要有该原理?
阿基米德性揭示了实数集中的一个重要特性:没有最大的实数。无论多小的正数,我们都可以找到一个倍数,使其大于某个固定的正实数。这一性质表明了实数没有“上限”,推广到负数,我们就可以认为实数没有“界限”,即没有最小的正实数。它反映了实数的无限性。这还包含另一个概念,即实数之间的间隔可以通过合适的倍数变得任意小。
在这里,我们提供一个寻找具体n的方法:
进位制的游戏:没有最大实数
我们首先从数字表示法的角度出发。考虑一个实数 a,它的表示是:
其中, 是整数部分,
是小数部分。比如,对于 a=3.14159,
,而
,以此类推。
此时,我们有如下关系:
这说明我们总可以找到一个整数,使得 a 的值小于等于 k+1,而且由于进位制,10的k+1次方远大于k+1整数本身,a 也小于 。这实际上是给出了 a 这个数的一个上界,它被限制在了一个范围内。
接着,我们考虑另一个实数 b,它的表示为:
其中 是整数部分,而
是小数部分。假设
是第一个不为零的正整数部分。
现在的关键点是通过进位制来调节数值的大小关系。
我们引入一个倍数 n 来放大 b 的值。设 ,我们将 b 乘以这个倍数:
由于 是第一个不为零的部分,将 b 乘以
,实际上是在对 b 做小数点移动的操作。因为
是正整数,所以通过这种乘法,我们可以将 b 放大到“无小数”的非零数部分,并保证一定的盈余,这使得b放大到足够大的数值。
此时,由于p为大于等于0的数,我们得到了:
这说明了将p引入10的幂次中是不可或缺的,并且,
因此,经过这一倍数的调整后,n·b 的值就变得足够大,可以超越 a。我们找到了n,这个过程也验证了阿基米德性。
预览实数稠密性:没有最小的实数
假设 b>0,我们希望证明存在一个正整数 ,使得:
。
证明
- 回顾阿基米德原理的不等式:nb > a。 令 a = 1,由阿基米德性可知,对于任意正实数 b>0,存在正整数
,使得:
- 两边同时取倒数,可得:
我们可以将它表述为一个阿基米德的推论:
对于任意正实数 b>0,存在正整数
,使得:
.
这说明:通过选择足够大的 n,我们可以找到一个正数 小于任意给定的正实数 b。因此,实数之间没有最小的正实数,这也表明正实数可以通过适当的倍数分割到任意小的区间。
这里的小,是可以无限接近于0,而不是存在负数的小。
五、实数的稠密性
我们已经看到了一些实数稠密性的特列,我们这里仍然给出的是“特例”,为了说明两个不相等实数之间仍然存在实数;而且不仅存在有理数、也存在无理数。
实数稠密性其实是一个几何表述,表示点在数轴上的没有空洞的状态,严谨的定义在更多的知识学习后才能表述;我们现在给出的仍然是较为直观的理解,这体现在以下三个方面:
1. 两个实数之间必有一个实数
给定任意两个实数 a,b (假设a<b),可以构造出一个介于 a 和 b 之间的实数。例如,选取,也就是区间中点 ,这显然满足
,(因为实数集是一个数域,我们可以很清晰的知道,
也是实数,并且具有如上不等关系)
区间中点为什么是
?
可以使用几何性质:设中点值为x,利用到两端的距离相等的几何性质求得;我们在前面已经引入过距离的定义了。
2. 任意两个实数之间存在有理数
实数的稠密性还体现在有理数的分布上:对于任意两个实数 a,b (假设 a<b),存在一个有理数 q∈Q 使得 a<q<b。
证明这一点可以通过构造法实现:根据实数的阿基米德性质的推论,总存在一个正整数 n 使得 ,这使得
小于ab距离的一半。
我们想要找到一个比 距离a更近的数,这个数就是k,是满足下述不等式的最大正整数:
,
所以有:
。
因为 ,所以加上两个1/n,这仍小于ab之间的距离,所以有:
。
上述过程说明,任意两个实数之间必然存在有理数。这是因为:
对于任何实数 a 和 b,通过适当选择正整数 n,总能在 (a,b) 内找到形如 的数,这两个数是有理数。
3. 任意两个实数之间存在无理数
(待补充)
实数之间没有最小的正实数间隔,即对任意两个不同的实数 a,b(假设 a<b),总可以找到另一个实数 c 满足 a < c < b。这反映了实数的无限可分性。
直观上,我们可以想象,不论多小的区间,总存在区间的中点,我们先取(a, b)中点,再对(a,(a+b)/2)或((a+b)/2,b)取中点,不断取,由于实数的封闭性,这样运算获得的中点始终是一个实数,所以我们可以不断分下去。
事实上,我们通过了构造有理数 或无理数
满足上述条件。这一性质的证明依赖于区间不空性:对区间 (a, b) 的取中点法总能找到新的实数,不空性需要进一步进行学习才能获得准确的定义。
六、实数的几何表示:与数轴上的点一一对应
具有稠密性后,我们可以将实数与数轴(特殊有刻度的直线)上的点对应起来,这就给出了实数的几何表达,严谨来说,实数的几何表示基于戴德金分割,也就是实数的完备性,我们还没有揭示这一部分。
现在我们先运用映射定义,即实数集 R 中的每个数 x 都对应数轴上的一个点 P(x),来定义实数的几何表达,这种映射是双射的,即:
- 数轴上的任意点对应唯一的实数;
- 每个实数对应数轴上的唯一点。
映射要求的内容是数学对象,没有强制为数,这就是为什么我们可以在“数”和“几何点”之间构建起映射,因为几何点也是数学对象。
另外,设 P(a) 和 P(b) ,a、b为点所对应的实数。它们是数轴上两点,距离为 ∣a−b∣,我们需要通过绝对值定义距离函数。
七、实数的绝对值与三角形不等式
绝对值定义
为了定义距离,我们引入绝对值,实数的绝对值定义为:
绝对值表示一个实数到0(假设我们已经知道了坐标轴的定义)原点(零点)的距离,它总是非负的。具体来说:
- 如果一个实数 x 为非负数(即 x≥0),那么它的绝对值就是它自身 ∣x∣=x;
- 如果一个实数 x 为负数(即 x<0),它的绝对值是它的相反数 ∣x∣=−x。
三角形不等式是绝对值的一个重要性质,对于任意 a,b∈R:
三角不等式证明
1. 通过绝对值的定义展开
根据绝对值的定义,∣x∣=x 当 x≥0,且 ∣x∣=−|x| 当 x<0。因此,对于任意实数 a 和 b,我们有:
∣a+b∣ = a+b 或 −(a+b)
2. 结合加法的可能性讨论
无论 a+b 的符号如何,都可以通过拆解其大小关系来得到:
−∣a∣≤a≤∣a∣,−∣b∣≤b≤∣b∣.
将 a+b 两边分别用这些性质约束,相加,我们得到,这获得了a+b的一个取值边界(上下界):
-(∣a∣ + ∣b∣) ≤a + b≤∣a∣ + ∣b∣.
取绝对值后,即表示 a+b 的距离不超过 ∣a∣+∣b∣,因此:
这证明了三角不等式的成立。
反向三角不等式的补充
这一性质也可以使用绝对值的基本定义证明:
- 通过已知的三角不等式,使用“增减项”的技巧,我们可以凑成便于应用三角不等式的形式:∣a∣=∣a−b+b∣≤∣a−b∣+∣b∣。
- 移项可得 ∣a∣−∣b∣≤∣a−b∣。
- 同理,从 ∣b∣=∣b−a+a∣≤∣b−a∣+∣a∣=∣a−b∣+∣a∣ 可得 ∣b∣−∣a∣≤∣a−b∣。
- 不论∣b∣−∣a∣、∣a∣−∣b∣是正是负,我们添加绝对值符号,总有: ∣∣a∣−∣b∣∣≤∣a−b∣.
注:
1.对于增减项方法,这种操作的背景是:通过引入辅助变量,寻找能够凸显结构性的形式,在这里是——便于直接应用不等式的形式。
这样的技巧需要一定的熟悉和了解,因为它——
- 目标导向性强:它通常是为了解决某个具体问题而设计的,并非直接从问题本身自然得出。
- 对辅助量的选择依赖经验:在这里,增减项选择了 bbb 作为辅助量,这需要对目标式有充分的理解以及对三角不等式的灵活运用。
2.如果读者对三角不等式和其推论很熟悉,直接使用“同理”省略冗余推导是完全可行的,因为对称性已经是显然的逻辑推论。而对于初学者或者逻辑严谨性要求较高的读者,重复论证虽然冗余,但能使思路更加清晰,便于理解。
虽然对称性显然,但有时为了形式上的完备性和避免误解,写出对称部分的推导可以确保不会漏掉关键步骤。这在严谨的数学写作中尤其重要。
其证明也可以基于平方方法:由 ,展开并整理得不等式成立。此外,反向等式:
也可以通过几何方式验证。
结语
实数是数学分析的基础,其性质不仅建立了数轴的连续性,也构成了解析几何和现代数学的基本框架。通过掌握上述性质,我们能够更加深入地理解函数的连续性、极限的存在性以及微积分的基础。