差异私有联邦学习:客户端级别

Differentially Private Federated Learning: A Client Level Perspective

本文发表于 NIPS 2017 会议

当一个模型以传统的方式学习时,它的参数揭示了关于训练期间使用的数据的信息。为了解决这一问题,提出了学习算法的差分隐私(dp)的概念。这样做的目的是确保学习的模型不会泄露在训练过程中是否使用了某个数据点。我们提出了一种将dp保持机制整合到联邦学习中的算法。然而,我们的目标不是只保护的单个数据点。我们希望确保学习的模型不会显示客户端是否参与了分散训练。这意味着客户机的整个数据集受到保护,以防止来自其他客户机的不同攻击。

而作者的贡献在于证明了我们提出的算法可以在模型性能损失很小的情况下实现客户端级别的差异隐私。其次,我们提出在分散训练过程中动态调整dp保持机制。实证研究表明,这样可以提高模型的性能。

1. 差分隐私的定义:

图片中的差分隐私定义为一个随机化机制
M : D → R ,其中 D 表示输入数据集的域, R 是输出范围。这个机制满足 ϵ , δ − 差分隐私( D P ), M: D \rightarrow R,其中 D 表示输入数据集的域, R 是输出范围。这个机制满足 \epsilon, \delta-差分隐私(DP), M:DR,其中D表示输入数据集的域,R是输出范围。这个机制满足ϵ,δ差分隐私(DP),
如果对于任意相邻的输入 d 和 d ′ (它们的差异仅为一个数据点),以及任意输出集合 S ⊆ R 我们有: 如果对于任意相邻的输入 d 和 d' (它们的差异仅为一个数据点),以及任意输出集合 S \subseteq R 我们有: 如果对于任意相邻的输入dd(它们的差异仅为一个数据点),以及任意输出集合SR我们有:

P [ M ( d ) ∈ S ] ≤ e ϵ P [ M ( d ′ ) ∈ S ] + δ P[M(d) \in S] \leq e^\epsilon P[M(d') \in S] + \delta P[M(d)S]eϵP[M(d)S]+δ
其中:

  • ϵ :隐私预算,衡量隐私损失的大小。值越小,隐私保护越好。 \epsilon :隐私预算,衡量隐私损失的大小。值越小,隐私保护越好。 ϵ:隐私预算,衡量隐私损失的大小。值越小,隐私保护越好。
  • δ :用于允许某些概率上的泄漏,通常是一个很小的值。当隐私机制稍微违反 ϵ − D P 时, δ 可以给出一个概率界限。 \delta :用于允许某些概率上的泄漏,通常是一个很小的值。当隐私机制稍微违反 \epsilon-DP时,\delta 可以给出一个概率界限。 δ:用于允许某些概率上的泄漏,通常是一个很小的值。当隐私机制稍微违反ϵDP时,δ可以给出一个概率界限。

这个定义表明,机制 ( M ) 对于相邻输入 ( d ) 和 ( d’ ) 产生的输出差异在一定程度上是有限的,从而保证了输入数据的隐私性。

2. 高斯机制(Gaussian Mechanism, GM)的解释:

高斯机制用于通过添加噪声来保护隐私。它针对实值函数 f : D → R 进行差分隐私处理。高斯机制通过加入根据数据集的敏感度 S f 校准的高斯噪声来保护隐私。 高斯机制用于通过添加噪声来保护隐私。它针对实值函数 f: D \rightarrow R 进行差分隐私处理。高斯机制通过加入根据数据集的敏感度 S_f 校准的高斯噪声来保护隐私。 高斯机制用于通过添加噪声来保护隐私。它针对实值函数f:DR进行差分隐私处理。高斯机制通过加入根据数据集的敏感度Sf校准的高斯噪声来保护隐私。

公式:

M ( d ) = f ( d ) + N ( 0 , σ 2 S f 2 ) M(d) = f(d) + \mathcal{N}(0, \sigma^2 S_f^2) M(d)=f(d)+N(0,σ2Sf2)

解释:

  • f ( d ) :对数据 d 的函数值输出。 f(d) :对数据 d 的函数值输出。 f(d):对数据d的函数值输出。

  • N ( 0 , σ 2 S f 2 ) :高斯噪声,均值为 0 ,方差为 σ 2 S f 2 。 \mathcal{N}(0, \sigma^2 S_f^2) :高斯噪声,均值为 0,方差为 \sigma^2 S_f^2 。 N(0,σ2Sf2):高斯噪声,均值为0,方差为σ2Sf2

    S f :函数 f 的敏感度,定义为相邻输入数据集 d 和 d ′ 之间的最大输出差异: S_f :函数 f 的敏感度,定义为相邻输入数据集 d 和 d' 之间的最大输出差异: Sf:函数f的敏感度,定义为相邻输入数据集dd之间的最大输出差异:

    S f = max ⁡ d , d ′ ∥ f ( d ) − f ( d ′ ) ∥ 这意味着 S f 衡量了相邻输入在输出上可能产生的最大变化,确保差分隐私的保护强度。 S_f = \max_{d, d'} \|f(d) - f(d')\| 这意味着 S_f 衡量了相邻输入在输出上可能产生的最大变化,确保差分隐私的保护强度。 Sf=d,dmaxf(d)f(d)这意味着Sf衡量了相邻输入在输出上可能产生的最大变化,确保差分隐私的保护强度。

高斯噪声:

噪声的大小由 S f 和 σ  决定,其中 σ 是噪声的尺度参数。敏感度 S f 越大,意味着输出变化越大,需要更大的噪声来遮掩输入数据的影响。 噪声的大小由 S_f 和 \sigma \ 决定,其中 \sigma 是噪声的尺度参数。敏感度 S_f 越大,意味着输出变化越大,需要更大的噪声来遮掩输入数据的影响。 噪声的大小由Sf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值