1. 集中式差分隐私
采用“客户端 - 可信服务器”二元拓扑结构。客户端将原始数据集传输至服务器,服务器运用全局敏感度计算噪声量级,再采用拉普拉斯机制或高斯机制对聚合数据施加扰动。其优势在于能利用全局数据计算扰动,隐私保护效果较好;缺点是依赖可信服务器,若服务器不可信,数据隐私易泄露。适用于对服务器信任度高、数据集中处理的场景。
2. 本地差分隐私
采用去中心化架构。客户端基于本地敏感度计算扰动参数,对原始数据实施随机化响应或值域扰动,仅向不可信服务器提交噪声数据,服务器通过方差修正补偿噪声偏差。优点是客户端可自主保护数据隐私,减少对服务器信任依赖;缺点是本地计算扰动可能导致噪声较大,影响模型性能。适用于客户端对隐私保护要求高、不信任服务器的场景。
3. 联合差分隐私
引入混洗器作为可信第三方,构建“客户端 - 混洗器 - 服务器”三级架构。客户端生成满足-LDP的扰动数据,混洗器对数据进行随机置换,打破数据与客户端的关联性,服务器再对数据施加额外噪声。优势在于通过混洗操作降低本地隐私预算,实现隐私预算的次线性累积;缺点是依赖可信混洗器,增加系统复杂性。适用于对隐私预算要求严格、需要降低隐私预算累积的场景。
4. 样本级别差分隐私
在样本层面添加噪声,确保单个样本数据的隐私。在模型训练或数据发布时,针对每个样本的梯度或输出添加噪声,使包含或不包含某样本的计算结果难以区分。其优势在于能为每个样本提供强隐私保护;缺点是添加噪声可能影响模型训练效率和准确性。常用于对个体数据隐私保护要求极高的场景,如医疗数据中保护患者个体信息。
5. 客户端级别差分隐私
从客户端整体角度出发,对客户端上传的模型参数或数据进行隐私保护。在联邦学习中,对客户端上传的模型更新进行噪声添加或梯度裁剪,保护客户端数据隐私。优点是在分布式场景下有效保护客户端隐私,降低信息泄露风险;缺点是可能影响模型收敛速度和性能。适用于联邦学习等分布式机器学习场景,保护客户端数据隐私。