GEO背景知识 + 分析思路

本文介绍了使用R语言进行基因表达数据分析的方法,包括从GEO获取GSM和GSE数据,处理和预览数据,通过limma包进行差异分析,以及进行代谢通路富集分析的过程。着重讲解了如何从GEO数据中提取信息,如GPL平台,以及如何处理非特异性探针和重复基因问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实验设计

实验目的: 通过基因表达量数据的差异分析富集分析来解释生物学现象

病变组织 vs 健康组织
药物处理 vs 对照组

有差异的材料 → 差异基因 → 代谢通路 / 功能注释 → 解释差异的原理

GEO数据:
**GEO数据**
GSM: 用户提交给GEO的样本数据。
GSE : 一个完整的研究,并提供了整个研究的描述,包括对数据的描述,总结分析。
GPL: 用户测序使用的芯片 / 平台。

基因表达芯片的原理:探针的表达量反应基因的表达量。
基因表达芯片表达矩阵
需要归一化吗?

分析思路

在这里插入图片描述

1. 看文章找GSE编号,到GEO数据库搜索

2. 下载数据:表达矩阵、临床信息

1. 将数据下载到本地

# 下载用函数实现
GEOquery::getGEO

2. 以对象的形式读入R(eSet)

从eSet中提取表达矩阵 exp(做分析的主体数据)
从eSet中提取临床信息 pd(数据框)(提取分组信息)
从eSet中提取 gpl 编号(寻找探针和基因之间对应关系的依据)

3. 检查数据:分组之间是否有差异,PCA,热图

# 数据框转置:
as.data.frame(t(exp))
# 热图标准化:
scale

不需要比较同一样本中的两个基因的绝对数值大小,一个基因在不同样本间的表达量差异才是重点。

截取方差最大的1000个基因作热图:
截取方差最大的1000个基因作热图

4. 差异分析及可视化,火山图、热图

limma包用于芯片差异分析

本质上只是R包和函数!
准备好需要输入的数据、写对参数
注意查看帮助文档

(另外,转录组数据差异分析三大R包:limma(voom)、edgeR、Deseq2)

limma差异分析的结果

limma差异分析的结果> 行名:探针的ID,继承于表达矩阵的行名。 每一行都计算了logFC和P.Value

火山图和差异基因热图

芯片注释:探针与基因的对应关系

探针与基因的对应关系
每个公司的芯片命名方式各不相同 基因名也有很多种 注释来源:
① GEO数据库中GPL页面的表格;
② Biocoductor的注释包 http://www.bio-info-trainee.com/1399.html
官网下载对应产品的注释表格(一般不用)
自主注释(一般不用,因为需要比较好的R语言基础和比较大的服务器)

一个探针对应多个基因

非特异性探针,注释文件中去除,不需要管

多个探针对应一个基因

按照基因去重复

5. 富集分析

输入数据

差异基因的entrezid,所有基因的entrezid。

# id转换:
bitr()

基因和ENTREZID的对应关系
Symbol:基因名
ENTREZID:富集分析指定用
二者并非一一对应,损失部分基因属于正常。

输出结果

输出结果的可视化

条带图

条带图
横坐标:每条通路富集到的count数

纵坐标:通路名称,按p值从大到小排序

颜色:按adjust.pvalue值从大到小分配

气泡图

气泡图
按富集基因数从大到小排列 横坐标:GeneRatio 纵坐标:通路名称,按照count数排序 颜色:根据P值 大小:根据count数

其它图

展示通路间的共同基因
展示通路间的共同基因
展示通路间的共同基因
展示有共同基因的通路
GO-plot展示通路之间的关系

在探索智慧旅游的新纪元中,一个集科技、创新与服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值