GEO背景知识 + 分析思路

实验设计

实验目的: 通过基因表达量数据的差异分析富集分析来解释生物学现象

病变组织 vs 健康组织
药物处理 vs 对照组

有差异的材料 → 差异基因 → 代谢通路 / 功能注释 → 解释差异的原理

GEO数据:
**GEO数据**
GSM: 用户提交给GEO的样本数据。
GSE : 一个完整的研究,并提供了整个研究的描述,包括对数据的描述,总结分析。
GPL: 用户测序使用的芯片 / 平台。

基因表达芯片的原理:探针的表达量反应基因的表达量。
基因表达芯片表达矩阵
需要归一化吗?

分析思路

在这里插入图片描述

1. 看文章找GSE编号,到GEO数据库搜索

2. 下载数据:表达矩阵、临床信息

1. 将数据下载到本地

# 下载用函数实现
GEOquery::getGEO

2. 以对象的形式读入R(eSet)

从eSet中提取表达矩阵 exp(做分析的主体数据)
从eSet中提取临床信息 pd(数据框)(提取分组信息)
从eSet中提取 gpl 编号(寻找探针和基因之间对应关系的依据)

3. 检查数据:分组之间是否有差异,PCA,热图

# 数据框转置:
as.data.frame(t(exp))
# 热图标准化:
scale

不需要比较同一样本中的两个基因的绝对数值大小,一个基因在不同样本间的表达量差异才是重点。

截取方差最大的1000个基因作热图:
截取方差最大的1000个基因作热图

4. 差异分析及可视化,火山图、热图

limma包用于芯片差异分析

本质上只是R包和函数!
准备好需要输入的数据、写对参数
注意查看帮助文档

(另外,转录组数据差异分析三大R包:limma(voom)、edgeR、Deseq2)

limma差异分析的结果

limma差异分析的结果> 行名:探针的ID,继承于表达矩阵的行名。 每一行都计算了logFC和P.Value

火山图和差异基因热图

芯片注释:探针与基因的对应关系

探针与基因的对应关系
每个公司的芯片命名方式各不相同 基因名也有很多种 注释来源:
① GEO数据库中GPL页面的表格;
② Biocoductor的注释包 http://www.bio-info-trainee.com/1399.html
官网下载对应产品的注释表格(一般不用)
自主注释(一般不用,因为需要比较好的R语言基础和比较大的服务器)

一个探针对应多个基因

非特异性探针,注释文件中去除,不需要管

多个探针对应一个基因

按照基因去重复

5. 富集分析

输入数据

差异基因的entrezid,所有基因的entrezid。

# id转换:
bitr()

基因和ENTREZID的对应关系
Symbol:基因名
ENTREZID:富集分析指定用
二者并非一一对应,损失部分基因属于正常。

输出结果

输出结果的可视化

条带图

条带图
横坐标:每条通路富集到的count数

纵坐标:通路名称,按p值从大到小排序

颜色:按adjust.pvalue值从大到小分配

气泡图

气泡图
按富集基因数从大到小排列 横坐标:GeneRatio 纵坐标:通路名称,按照count数排序 颜色:根据P值 大小:根据count数

其它图

展示通路间的共同基因
展示通路间的共同基因
展示通路间的共同基因
展示有共同基因的通路
GO-plot展示通路之间的关系

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值