动态规划的模版题

动态规划的模版题

樱花

题目背景

《爱与愁的故事第四弹·plant》第一章。

题目描述

爱与愁大神后院里种了 n n n 棵樱花树,每棵都有美学值 C i ( 0 ≤ C i ≤ 200 ) C_i(0 \le C_i \le 200) Ci(0Ci200)。爱与愁大神在每天上学前都会来赏花。爱与愁大神可是生物学霸,他懂得如何欣赏樱花:一种樱花树看一遍过,一种樱花树最多看 A i ( 0 ≤ A i ≤ 100 ) A_i(0 \le A_i \le 100) Ai(0Ai100) 遍,一种樱花树可以看无数遍。但是看每棵樱花树都有一定的时间 T i ( 0 ≤ T i ≤ 100 ) T_i(0 \le T_i \le 100) Ti(0Ti100)。爱与愁大神离去上学的时间只剩下一小会儿了。求解看哪几棵樱花树能使美学值最高且爱与愁大神能准时(或提早)去上学。

输入格式

n + 1 n+1 n+1行:

1 1 1 行:现在时间 T s T_s Ts(几时:几分),去上学的时间 T e T_e Te(几时:几分),爱与愁大神院子里有几棵樱花树 n n n。这里的 T s T_s Ts T e T_e Te 格式为:hh:mm,其中 0 ≤ h h ≤ 23 0 \leq hh \leq 23 0hh23 0 ≤ m m ≤ 59 0 \leq mm \leq 59 0mm59,且 h h , m m , n hh,mm,n hh,mm,n 均为正整数。

2 2 2 行到第 n + 1 n+1 n+1 行,每行三个正整数:看完第 i i i 棵树的耗费时间 T i T_i Ti,第 i i i 棵树的美学值 C i C_i Ci,看第 i i i 棵树的次数 P i P_i Pi P i = 0 P_i=0 Pi=0 表示无数次, P i P_i Pi 是其他数字表示最多可看的次数 P i P_i Pi)。

输出格式

只有一个整数,表示最大美学值。

样例 #1

样例输入 #1

6:50 7:00 3
2 1 0
3 3 1
4 5 4

样例输出 #1

11

提示

100 % 100\% 100% 数据: T e − T s ≤ 1000 T_e-T_s \leq 1000 TeTs1000(即开始时间距离结束时间不超过 1000 1000 1000 分钟), n ≤ 10000 n \leq 10000 n10000。保证 T e , T s T_e,T_s Te,Ts 为同一天内的时间。

样例解释:赏第一棵樱花树一次,赏第三棵樱花树 2 2 2 次。

思路

这道题目考查的算法知识是多重背包.

在开始的时候,我以为只需要三重循环就可以过了,但是直接TLE了一发(╥﹏╥),属实是我偷懒没看时间复杂度,这个算法复杂度是O(TnA),大概在10的9次幂,完美超时.

核心代码如下(三个循环的顺序只能是这样,外层毫无疑问.体积必须要在外侧,因为当前种类的物品只能由上一种类的物品转移过来)

for(int i=1;i<=n;i++)
{
    for(int j=T;j>=times[i];j--)
    {
        for(int z=0;z<=k[i];z++)
        {
        		if(z*times[i]<=j)
        	  {
     	     	    dp[j]=max(dp[j],dp[j-z*times[i]]+val[i]*z);
   	     	  }
        }
    }
}

为了优化这个代码的时间复杂度,优化一下A,于是就有了接下来的二进制优化

大致的实现就是从原来的一个一个放,变成一组一组放,这样就控制了放置次数在10次以内.就能满足最坏情况.

再优化一下n,当Ai大与最大能放的值的时候,就可以当作是完全背包来存放,也就是从多重背包变为完全背包,可以优化一点常数,

代码实现

#include <bits/stdc++.h>
using namespace std;
int main()
{
    int begin_h,begin_m;
    int end_h,end_m;
    char c;
    cin>>begin_h>>c>>begin_m>>end_h>>c>>end_m;
    int T=0;
    T=end_h*60+end_m-begin_h*60-begin_m;

    int n;
    cin>>n;
    int val[10001]={},times[10001]={},k[10001]={};
    for(int i=1;i<=n;i++)
    {
        cin>>times[i]>>val[i]>>k[i];
    }
    int dp[1001]={};
    for(int i=1;i<=n;i++)
    {
        if(k[i]*times[i]>=T || k[i]==0) //转换为完全背包
        {
            for(int j=times[i];j<=T;j++)
            {
                dp[j]=max(dp[j],dp[j-times[i]]+val[i]);
            }
        }
        else
        {
            int num=1;
            while(k[i]>num)
            {
                for(int j=T;j>=times[i]*num;j--)
                {
                    dp[j]=max(dp[j],dp[j-times[i]*num]+val[i]*num);
                }
                k[i]-=num;
                num*=2;
            }
            for(int j=T;j>=k[i]*times[i];j--)
            {
                dp[j]=max(dp[j],dp[j-k[i]*times[i]]+val[i]*k[i]);
            }
        }
        
        
    }
    cout<<dp[T]<<endl;
    return  0;
}

[NOIP2012 普及组] 摆花

题目描述

小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共 m m m 盆。通过调查顾客的喜好,小明列出了顾客最喜欢的 n n n 种花,从 1 1 1 n n n 标号。为了在门口展出更多种花,规定第 i i i 种花不能超过 a i a_i ai 盆,摆花时同一种花放在一起,且不同种类的花需按标号的从小到大的顺序依次摆列。

试编程计算,一共有多少种不同的摆花方案。

输入格式

第一行包含两个正整数 n n n m m m,中间用一个空格隔开。

第二行有 n n n 个整数,每两个整数之间用一个空格隔开,依次表示 a 1 , a 2 , ⋯   , a n a_1,a_2, \cdots ,a_n a1,a2,,an

输出格式

一个整数,表示有多少种方案。注意:因为方案数可能很多,请输出方案数对 1 0 6 + 7 10^6+7 106+7 取模的结果。

样例 #1

样例输入 #1

2 4
3 2

样例输出 #1

2

提示

【数据范围】

对于 20 % 20\% 20% 数据,有 0 < n ≤ 8 , 0 < m ≤ 8 , 0 ≤ a i ≤ 8 0<n \le 8,0<m \le 8,0 \le a_i \le 8 0<n8,0<m8,0ai8

对于 50 % 50\% 50% 数据,有 0 < n ≤ 20 , 0 < m ≤ 20 , 0 ≤ a i ≤ 20 0<n \le 20,0<m \le 20,0 \le a_i \le 20 0<n20,0<m20,0ai20

对于 100 % 100\% 100% 数据,有 0 < n ≤ 100 , 0 < m ≤ 100 , 0 ≤ a i ≤ 100 0<n \le 100,0<m \le 100,0 \le a_i \le 100 0<n100,0<m100,0ai100

NOIP 2012 普及组 第三题

思路

这道题主要难在状态转移方程和代码实现

我们设 $ dp[i][j] $ 表示i种花盆, j j j 个位置能实现的方案数

于是就能写出:

d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + d p [ i − 1 ] [ j − 1 ] + ⋯ + d p [ i − 1 ] [ j − m i n ( j , a [ i ] ) ] dp[i][j] = dp[i-1][j] + dp[i-1][j-1] + \cdots + dp[i-1][j-min(j,a[i])] dp[i][j]=dp[i1][j]+dp[i1][j1]++dp[i1][jmin(j,a[i])]

我们会发现每个第一个维度可以直接去掉,并且对于位置长度为 j j j d p [ j ] dp[j] dp[j] ,是由长度不大于 j j j 的状态转移过来,所以 j j j 要从大到小循环

「当时我在写的时候推出状态转移方程了,但是没写出来,说明代码实现能力还是比较弱,还是要多写题目」

代码实现

#include<bits/stdc++.h>
using namespace std;
const int maxn=101;
const int mod=1e6+7;
int a[maxn]={};
int dp[maxn]={};
int main()
{
    int n,m;
    cin>>n>>m;
    dp[0]=1;
    for(int i=1;i<=n;i++) cin>>a[i];
    for(int i=1;i<=n;i++)
    {
        for(int j=m;j>=1;j--)
        {
            for(int z=j-1;z>=j-a[i]&& z>=0;z--)
            {
                dp[j]=(dp[j]+dp[z]) %mod;
            }
        }
    }
    cout<<dp[m]<<endl;
    return 0;
}

[NOIP2006 提高组] 金明的预算方案

题目描述

金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过 n n n 元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:

主件附件
电脑打印机,扫描仪
书柜图书
书桌台灯,文具
工作椅

如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有 0 0 0 个、 1 1 1 个或 2 2 2 个附件。每个附件对应一个主件,附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的 n n n 元。于是,他把每件物品规定了一个重要度,分为 5 5 5 等:用整数 1 ∼ 5 1 \sim 5 15 表示,第 5 5 5 等最重要。他还从因特网上查到了每件物品的价格(都是 10 10 10 元的整数倍)。他希望在不超过 n n n 元的前提下,使每件物品的价格与重要度的乘积的总和最大。

设第 j j j 件物品的价格为 v j v_j vj,重要度为 w j w_j wj,共选中了 k k k 件物品,编号依次为 j 1 , j 2 , … , j k j_1,j_2,\dots,j_k j1,j2,,jk,则所求的总和为:

v j 1 × w j 1 + v j 2 × w j 2 + ⋯ + v j k × w j k v_{j_1} \times w_{j_1}+v_{j_2} \times w_{j_2}+ \dots +v_{j_k} \times w_{j_k} vj1×wj1+vj2×wj2++vjk×wjk

请你帮助金明设计一个满足要求的购物单。

输入格式

第一行有两个整数,分别表示总钱数 n n n 和希望购买的物品个数 m m m

2 2 2 到第 ( m + 1 ) (m + 1) (m+1) 行,每行三个整数,第 ( i + 1 ) (i + 1) (i+1) 行的整数 v i v_i vi p i p_i pi q i q_i qi 分别表示第 i i i 件物品的价格、重要度以及它对应的的主件。如果 q i = 0 q_i=0 qi=0,表示该物品本身是主件。

输出格式

输出一行一个整数表示答案。

样例 #1

样例输入 #1

1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0

样例输出 #1

2200

提示

数据规模与约定

对于全部的测试点,保证 1 ≤ n ≤ 3.2 × 1 0 4 1 \leq n \leq 3.2 \times 10^4 1n3.2×104 1 ≤ m ≤ 60 1 \leq m \leq 60 1m60 0 ≤ v i ≤ 1 0 4 0 \leq v_i \leq 10^4 0vi104 1 ≤ p i ≤ 5 1 \leq p_i \leq 5 1pi5 0 ≤ q i ≤ m 0 \leq q_i \leq m 0qim,答案不超过 2 × 1 0 5 2 \times 10^5 2×105

思路

这道题可以用分组背包来写.我们虚拟一个最大的背包,包裹着所有的分组背包.

每个主件都当作一个背包,它对应的附件都属于对应的主件的背包中.

对每个背包,刚开始都先从最大的背包那里得到初始状态.但是要做一点小改变,因为这个背包必须要加上主件,所以在刚开始的dp值要加上主件的值.然后单独用01背包处理.接着要注意,在体积的那个循环那里,下限要算上之前已经放的主件的体积.最后,要把当前的背包得到的状态更新到最大的背包那里.

输出最大的背包的 d p [ m ] dp[m] dp[m] 值即可

时间复杂度小优化:

刚开始就直接把每个背包分开来,用vector存储,这样在弄01背包的时候就可以直接进行,不用从头到尾去找当前主件对应的附件,这样就节省了枚举次数.

「这道题还可以用四种动态规划方程去写,思路也很清晰,但是当附件数变多的时候,这种方法就不可取了,所以这里还是用了分组背包的方法」

代码实现

#include<bits/stdc++.h>
using namespace std;
const int maxn=61;
struct good
{
    int v,p,q;
}G;
vector<good> V[maxn];
int inde[maxn]={};
int main()
{
    int n,m;
    int v,p,q;
    cin>>n>>m;
    int temp=1;
    for(int i=1;i<=m;i++)
    {
        cin>>v>>p>>q;
        G.v=v,G.p=p*v,G.q=q;
        if(q==0)
        {
            V[temp].push_back(G);
            inde[i]=temp;
            temp++;
        }
        else
        {
            V[inde[q]].push_back(G);
        }
    }
    --temp;
    int f[200005]={};
    int h[200005]={};
    for(int i=1;i<=temp;i++)
    {
        for(int j=V[i][0].v;j<=n;j++)
        {
            h[j]=f[j-V[i][0].v]+V[i][0].p;
        }
        for(int j=1;j<=V[i].size()-1;j++)
        {
            for(int z=n;z>=V[i][0].v+V[i][j].v;z--)
            {
                h[z]=max(h[z],h[z-V[i][j].v]+V[i][j].p);
            }
        }
        for(int j=V[i][0].v;j<=n;j++)
        {
            f[j]=max(f[j],h[j]);
        }
    }
    cout<<f[n]<<endl;
    return 0;
}

总结

这次的动态规划有点难度了,但其实还主要是模版的运用,主要考察了多重背包和分组背包

多重背包可以用完全背包和二进制优化

分组背包要注意大背包数据的引入和更新

感觉多看看就有点懂了,但是说不出所以然(呜呜呜)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值