with torch.no_grad() 语句

torch.no_grad()是PyTorch中的一个上下文管理器,用于在不需要计算梯度的场景下提高代码执行效率,如模型评估或推理。它会临时关闭梯度跟踪,避免不必要的内存消耗和计算。在withtorch.no_grad():代码块内的操作不会被记录在计算图中,因此不会参与反向传播和参数更新。
摘要由CSDN通过智能技术生成

`with torch.no_grad():`是在使用PyTorch进行深度学习任务时经常会遇到的语句。它是PyTorch中的上下文管理器,用于指定一个代码块,在该代码块中的操作将不会被计算图跟踪和梯度更新。

在深度学习任务中,通常需要计算模型的前向传播和反向传播,以便进行参数更新和优化。然而,有时候我们只需要进行前向传播,并且不希望跟踪梯度或进行参数更新,例如在模型评估或推理阶段。这时可以使用`torch.no_grad()`上下文管理器来告诉PyTorch不要跟踪梯度。

具体来说,`with torch.no_grad():`语句的作用如下:

1. 在进入`with`代码块之前,通过调用`torch.no_grad()`函数创建了一个上下文环境,其中设置了全局的`requires_grad`标志为`False`,表示不需要计算梯度。

2. 在`with`代码块中,所有的操作都不会被跟踪,包括前向传播、反向传播和参数更新等。这样可以提高代码的执行效率,并节省内存。

3. 离开`with`代码块后,恢复了之前的`requires_grad`标志状态,即重新启用梯度跟踪。

使用`with torch.no_grad():`的示例如下:

import torch

# 创建一个张量
x = torch.tensor([1.0, 2.0], requires_grad=True)

# 在无需计算梯度的环境下进行前向传播
with torch.no_grad():
    y = x * 2
    z = y.mean()

print(y)  # 不会计算梯度
print(z)  # 不会计算梯度

在上述示例中,`x`是一个需要计算梯度的张量,但是在`with torch.no_grad():`代码块中,对`x`进行的操作将不会被跟踪梯度。因此,`y`和`z`都不会具有梯度信息。

总之,`with torch.no_grad():`语句是一种在PyTorch中控制梯度跟踪的机制,可以有效地禁用梯度计算,提高代码的执行效率,并避免不必要的内存消耗。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值