李沐 线性回归的从0开始实现【动手学深度学习v2】

:label:sec_linear_scratch

在了解线性回归的关键思想之后,我们可以开始通过代码来动手实现线性回归了。

在这一节中,我们将从零开始实现整个方法, 包括数据流水线、模型、损失函数和小批量随机梯度下降优化器。 虽然现代的深度学习框架几乎可以自动化地进行所有这些工作,但从零开始实现可以确保我们真正知道自己在做什么。 同时,了解更细致的工作原理将方便我们自定义模型、自定义层或自定义损失函数。

在这一节中,我们将只使用张量和自动求导

在之后的章节中,我们会充分利用深度学习框架的优势,介绍更简洁的实现方式。

生成数据集

为了简单起见,我们将[根据带有噪声的线性模型构造一个人造数据集]

我们的任务是使用这个有限样本的数据集来恢复这个模型的参数。 我们将使用低维数据,这样可以很容易地将其可视化。 在下面的代码中,我们生成一个包含1000个样本的数据集, 每个样本包含从标准正态分布中采样的2个特征。 我们的合成数据集是一个矩阵𝑋∈𝑅1000×2。

我们使用线性模型参数𝑤=[2,−3.4]⊤𝑏=4.2 和噪声项𝜖生成数据集及其标签:

𝑦=𝑋𝑤+𝑏+𝜖

𝜖可以视为模型预测和标签时的潜在观测误差。

在这里我们认为标准假设成立,即𝜖服从均值为0的正态分布

为了简化问题,我们将标准差设为0.01

下面的代码生成合成数据集。

X是均值为0,方差为1的随机数,生成num_examples个样本,列数为w的长度

y为X与w的乘积,再加上偏差b

为了提高难度,y再加上一个均值为0,方差为0.01,长度与y相等的随机噪音

最后返回X,以及将 y reshape为一个列向量。

定义真实的w和真实的b

通过synthetic_data函数生成特征标注

注意:

features中的每一行都包含一个二维数据样本

 labels中的每一行都包含一维标签值(一个标量)

通过生成第二个特征features[:, 1]labels的散点图, 可以直观观察到两者之间的线性关系。

读取数据集

回想一下,训练模型时要对数据集进行遍历,每次抽取一小批量样本,并使用它们来更新我们的模型。 由于这个过程是训练机器学习算法的基础,所以有必要定义一个函数, 该函数能打乱数据集中的样本并以小批量方式获取数据

在下面的代码中,我们定义一个data_iter函数, 该函数接收批量大小、特征矩阵和标签向量作为输入,生成大小为batch_size的小批量。 每个小批量包含一组特征和标签。

范围为0~n-1。

将下标完全打乱。

以随机的顺序去访问样本。

生成随机顺序的特征和标号。

yield 是 Python 中的一个关键字,用于定义生成器函数。生成器函数可以返回一个迭代器,该迭代器可以逐个产生值,而不是一次性返回所有值。

通常,我们利用GPU并行运算的优势,处理合理大小的“小批量”。 每个样本都可以并行地进行模型计算,且每个样本损失函数的梯度也可以被并行计算。 GPU可以在处理几百个样本时,所花费的时间不比处理一个样本时多太多。

我们直观感受一下小批量运算:读取第一个小批量数据样本并打印。 每个批量的特征维度显示批量大小和输入特征数。 同样的,批量的标签形状与batch_size相等。

当我们运行迭代时,我们会连续地获得不同的小批量,直至遍历完整个数据集。

上面实现的迭代对教学来说很好,但它的执行效率很低,可能会在实际问题上陷入麻烦。 例如,它要求我们将所有数据加载到内存中,并执行大量的随机内存访问。 在深度学习框架中实现的内置迭代器效率要高得多, 它可以处理存储在文件中的数据和数据流提供的数据。

初始化模型参数

在我们开始用小批量随机梯度下降优化我们的模型参数之前, (我们需要先有一些参数)。

在下面的代码中,我们通过从均值为0、标准差为0.01的正态分布中采样随机数来初始化权重, 并将偏置初始化为0。

在初始化参数之后,我们的任务是更新这些参数,直到这些参数足够拟合我们的数据。

每次更新都需要计算损失函数关于模型参数的梯度。 有了这个梯度,我们就可以向减小损失的方向更新每个参数。 因为手动计算梯度很枯燥而且容易出错,所以没有人会手动计算梯度。 我们使用 :numref:sec_autograd中引入的自动微分来计算梯度。

定义模型

接下来,我们必须[定义模型,将模型的输入和参数同模型的输出关联起来。]

计算线性模型的输出——计算输入特征𝑋和模型权重𝑤的矩阵-向量乘法后加上偏置𝑏。 注意,上面的Xw是一个向量,而𝑏是一个标量。根据广播机制: 当一个向量加一个标量时,标量会被加到向量的每个分量上

[定义损失函数]

因为需要计算损失函数的梯度,所以我们应该先定义损失函数。

这里我们使用 :numref:sec_linear_regression中描述的平方损失函数。

在实现中,我们需要真实值y的形状转换为和预测值y_hat的形状相同

(定义优化算法)

在每一步中,使用从数据集中随机抽取的一个小批量,然后根据参数计算损失的梯度。 接下来,朝着减少损失的方向更新我们的参数。 下面的函数实现小批量随机梯度下降更新。

sgd函数接受模型参数集合(params)、学习速率(lr)和批量大小(batch_size)作为输入。每一步更新的大小由学习速率lr决定。 因为我们计算的损失是一个批量样本的总和,所以我们用批量大小(batch_size) 来规范化步长,这样步长大小就不会取决于我们对批量大小的选择。

无需计算梯度

最后把梯度设为0,以便下次使用(不会自动设为0).

训练

现在我们已经准备好了模型训练所有需要的要素,可以实现主要的[训练过程]部分了。

理解这段代码至关重要,因为从事深度学习后, 相同的训练过程几乎一遍又一遍地出现。 在每次迭代中,我们读取一小批量训练样本,并通过我们的模型来获得一组预测。 计算完损失后,我们开始反向传播,存储每个参数的梯度。 最后,我们调用优化算法sgd来更新模型参数。

概括一下,我们将执行以下循环:

  • 初始化参数
  • 重复以下训练,直到完成
    • 计算梯度
    • 更新参数(𝑤,𝑏)←(𝑤,𝑏)−𝜂𝑔

在每个迭代周期(epoch)中,我们使用data_iter函数遍历整个数据集, 并将训练数据集中所有样本都使用一次(假设样本数能够被批量大小整除)。

这里的迭代周期个数num_epochs和学习率lr都是超参数,分别设为3和0.03。

设置超参数很棘手,需要通过反复试验进行调整。

num_epochs等于3,说明要遍历3次数据集。

net用于储存我们使用的模型linreg。

loss赋为squared_loss,即均方损失。

这部分为y的预测值

因为我们使用的是自己合成的数据集,所以我们知道真正的参数是什么。 因此,我们可以通过[比较真实参数和通过训练学到的参数来评估训练的成功程度]。 事实上,真实参数和通过训练学到的参数确实非常接近。

注意,我们不应该想当然地认为我们能够完美地求解参数。

在机器学习中,我们通常不太关心恢复真正的参数,而更关心如何高度准确预测参数。 幸运的是,即使是在复杂的优化问题上,随机梯度下降通常也能找到非常好的解。 其中一个原因是,在深度网络中存在许多参数组合能够实现高度精确的预测。

小结

  • 我们学习了深度网络是如何实现和优化的。在这一过程中只使用张量和自动微分,不需要定义层或复杂的优化器。
  • 这一节只触及到了表面知识。在下面的部分中,我们将基于刚刚介绍的概念描述其他模型,并学习如何更简洁地实现其他模型。

ps:

将学习速率lr调小后,损失会变大。

可以再将迭代周期调大

如果lr太大,会发现loss超出表示范围。

  • 13
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值