Knn算法python实现

Knn算法简介

K最近邻(KNN)是一种简单而有效的机器学习算法,用于分类和回归任务。它的工作原理基于数据点之间的距离度量。以下是KNN算法的简要介绍:

1. **基本概念**:
   - KNN是一种基于实例的学习算法,不需要显式地训练模型。它存储训练数据的所有实例,并根据新实例与训练数据中实例的相似度来进行预测。
   - KNN算法对应两种基本任务:分类和回归。在分类问题中,它预测实例属于哪个类别;在回归问题中,它预测实例的连续数值。

2. **工作流程**:
   - 对于给定的新实例,算法计算它与训练数据中每个实例的距离。
   - 然后,选择距离最近的K个训练实例(邻居),这些邻居的数量K是预先指定的。
   - 最后,通过投票(对于分类问题)或取平均值(对于回归问题)来预测新实例的标签或数值。

3. **距离度量**:
   - KNN算法常用的距离度量包括欧氏距离、曼哈顿距离、闵可夫斯基距离等。
   - 对于分类问题,通常使用投票策略,即选择K个邻居中出现最频繁的类别作为预测结果。
   - 对于回归问题,通常采用平均值策略,即将K个邻居的目标值的平均值作为预测结果。

4. **参数K的选择**:
   - K的选择对KNN算法的性能至关重要。较小的K值会增加模型的复杂度,可能导致过拟合;较大的K值会增加模型的偏差,可能导致欠拟合。
   - 一般而言,K的选择是通过交叉验证等技术来确定的。

5. **优点和缺点**:
   - 优点:
     - 简单易于理解和实现。
     - 对于小型数据集表现良好,尤其是数据集中的噪声较少时。
   - 缺点:
     - 对于大型数据集计算开销较大。
     - 对于高维数据集表现较差,因为在高维空间中距离的计算变得困难。

总的来说,KNN是一种简单而有效的机器学习算法,特别适用于小型数据集和低维空间。

算法实现步骤

 原理非常简单,下面以一个简单的例子引入。
已知两种酒的标签:赤霞珠和黑皮诺,在这个情景中,我们对酒进行分类的依据是酒精浓度和颜色深度,如下图所示:红色代表赤霞珠,紫色代表黑皮诺,图中有一分类未知的黄点,给定一个K值,我们找到距离黄点最近的K个点,假设K取3,我们发现距离黄点最近的3个点都是红点,0个紫点,根据少数服从多数原则,红:紫 = 3:0,所以认为黄点属于红色这一类,即赤霞珠。

  1. 确定一个K值, K值我一般取奇数,方便投票;
  2. 计算已知类别数据集中的点与当前点的距离 ;
  3. 找到距离最小的K个点 ;
  4. 确认这K个点的类别 ;
  5. 把出现次数最多的类别作为当前点的预测类别 ;


             

如何用python实现KNN算法

1.python实现

#导入需要的库
import numpy as np
import pandas as pd`
import matplotlib.pyplot as plt
#训练数据
rowdata = {'颜色深度':[14.23,13.2,13.16,14.37,13.24,12.07,12.43,11.79,12.37,12.04],
          '酒精浓度':[5.64,4.38,5.68,4.80,4.32,2.76,3.94,3.  ,2.12,2.6 ],
          '品种':[0,0,0,0,0,1,1,1,1,1]}

2.rowdata中的品种为 0 代表 “黑皮诺”,1 代表 “赤霞珠”, 设置一个未知类别的点,变量名为new_data

#新设置一个未知类别的点
new_data = np.array([4.1,12.8])
#把rowdata转换为DataFrame
wine_data = pd.DataFrame(rowdata)

3.wine_data信息

	颜色深度	酒精浓度	品种
0	14.23	5.64	0
1	13.20	4.38	0
2	13.16	5.68	0
3	14.37	4.80	0
4	13.24	4.32	0
5	12.07	2.76	1
6	12.43	3.94	1
7	11.79	3.00	1
8	12.37	2.12	1
9	12.04	2.60	1

4.绘制散点图

#修改样式
plt.style.use('ggplot')
#windows电脑电脑正常显示中文
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.figure(figsize=(6,4),dpi = 300)
plt.scatter(wine_data[wine_data.品种 == 0]['酒精浓度'], wine_data[wine_data.品种 == 0]['颜色深度'], c = 'purple', label = '黑皮诺' )
plt.scatter(wine_data[wine_data.品种 == 1]['酒精浓度'], wine_data[wine_data.品种 == 1]['颜色深度'], c = 'red' , label = '赤霞珠' )
plt.scatter(new_data[0] , new_data[1] ,c = 'yellow')
plt.scatter(3.5 , 12.2 ,c = 'green')
plt.title('10瓶红酒')
plt.xlabel('酒精浓度')
plt.ylabel('颜色深度')
# 图例添加 1. scatter 里面 添加 label 2. 添加plt.legend()
plt.legend(loc = 2)
# 将新的数据new_data绘制上来
plt.show()

5.各点分布情况

实现步骤

# 1.确定一个k值 为 3
k = 3
# 2.计算已知类别数据集中的点与当前点的距离
distance = np.sqrt(np.sum((wine_data[['酒精浓度','颜色深度']] - new_data)**2,axis=1))
distance
#3.找到距离最小的K个点
#argsort对其排序,返回其索引值,再切片得到最近的k个值
distance.argsort()[:k]
#4.确认这K个点的类别
k_vote = wine_data.loc[distance.argsort()[:k]]['品种']
#5.把出现次数最多的类别作为当前点的预测类别
k_vote.mode()[0]

结果

0

Sklearn建模流程

Sklearn建模步骤如下:

  1. 实例化 ,建立评估模型对象;
  2. 训练模型 ;
  3. 模型预测 ;
  4. 模型评估 ;
  5. 模型调优 ;

#先导入算法模型API
from sklearn.neighbors import KNeighborsClassifier
# 使用KNN类,实例化一个KNN算法的对象
# 模型命名为knn,这里的n_neighbors就是上面的K,这里K依然取3
# K的最优值可以通过绘制学习曲线来
knn = KNeighborsClassifier(n_neighbors=3)
# 提取出输入数据
x = wine_data.iloc[:,:2].values
# 提取出目标标签
y = wine_data.iloc[:,-1].values
#训练模型
knn.fit(x,y)
# 传入的新数据, 必须和原来的X的维度相同,所以需要改变一下new_data的形状
new_data.reshape(1,2)
#使用模型对未知数据进行预测
knn.predict(new_data.reshape(1,2))
#模型评估
knn.score(new_data.reshape(1,2),knn.predict(new_data.reshape(1,2)))

通过训练好的模型可以用于预测未知点,但其实这个模型是不够完美的,在KNN这个算法中,就只有一个参数K,我们还可以通过绘制学习曲线来寻找最优K值。

scores = []
for i in range(1,31):
    #建模
    knn = KNeighborsClassifier(n_neighbors=i)
    #训练
    knn.fit(X_train,y_train)
    #评估模型 knn.score(X_test,y_test)
    scores.append(knn.score(X_test,y_test))

当k大概取17的时候,模型评分是最高的,比K=3的分数高很多,所以我们可以把重新建模,令n_neighbors = 17。

  • 23
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值