机器学习之支持向量机(SVM)

一、支持向量机

1.1定义

  • 支持向量机是一种监督式学习的方法,按照监督学习(supervised learning)的方式对数据进行分类或回归。
  • 它是一类广义线性分类器(generalized linear classifier),其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane)。
  • SVM通过寻找支持向量(即距离超平面最近的数据点)来确定最优的超平面,这些支持向量对于分类决策起着关键作用。

1.2分类

1.3优缺点

优点:

  1. 泛化能力强:SVM以统计学习理论为基础,采用结构风险最小化原则,因此具有良好的泛化能力和推广性能。这意味着SVM能够在处理未知数据时保持较高的准确性。

  2. 全局最优解:SVM的求解过程是一个凸二次规划问题,这保证了可以得到全局最优解,从而确保了解的有效性。

  3. 处理高维数据:SVM通过巧妙地构造核函数,能够克服特征空间中的维数灾难问题。它只需要在原空间中计算样本数据与支持向量的内积,而不需要知道非线性映射的显性表达形式,从而有效地处理高维数据。

  4. 适用于小样本数据:SVM的分类效果不仅与训练样本的数量有关,还与样本的分布情况有关。在样本量不是海量数据的情况下,SVM的分类准确率高。

  5. 可以处理非线性问题:通过选择合适的核函数,SVM可以将非线性问题转化为线性问题进行处理,从而扩大了其应用范围。

缺点:

  1. 对参数敏感:SVM的性能受到多个参数(如核函数的选择、正则化参数等)的影响。这些参数的选择对分类结果有较大的影响,需要进行反复试验和调整。如果参数选择不当,可能会导致分类效果较差。

  2. 计算复杂度高:尤其是对于大规模数据集和高维数据集,SVM的计算时间和计算空间需求都会很大。此外,训练过程需要多次迭代,也会增加计算的复杂度。

  3. 对噪声数据敏感:如果数据中存在噪声或孤立点,可能会对SVM的分类结果造成不良影响。因此,在使用SVM进行分类之前,通常需要对数据进行预处理以去除噪声。

  4. 仅适用于二分类问题:原始的SVM是设计用来解决二分类问题的。虽然可以通过构造多个二分类器来解决多分类问题,但效果可能并不理想。

二、基本概念

2.1线性可分

        对于一个数据集合可以画一条直线将两组数据点分开,这样的数据称为线性可分,如下图:

2.2平面与间隔

1.超平面:对于三维及三维以上的数据来说,分隔数据的是个平面,称为超平面,也就是分类的决策边界。

2.分割超平面:将上述数据集分隔开来的直线成为分隔超平面。对于二维平面来说,分隔超平面就是一条直线。

3.间隔:数据集所有点到分隔面的最小间隔的2倍,称为分类器或数据集的间隔。论文中提到的间隔多指这个间隔。SVM分类器就是要找最大的数据集间隔。

4.点相对于分割面的间隔:点到分割面的距离,称为点相对于分割面的间隔。

5.支持向量: 离分隔超平面最近的那些点。

三、寻找最大间隔

3.1分割超平面

        二维空间一条直线的方程为,y=ax+b,推广到n维空间,就变成了超平面方程,即f(x)=w^{T}x+b,其中w是权重,b是截距,训练数据就是训练得到权重和截距。

3.2决定最好参数

SVM划分的超平面:f(x) = 0,w为法向量,决定超平面方向,
假设超平面将样本正确划分
  f(x) ≥ 1,y = +1
  f(x) ≤ −1,y = −1
间隔:d=2/|w| 

最大化间隔也就是寻找参数w和b , 使得下述公式最大:

四、对偶问题

4.1KKT条件

        KKT条件(Karush-Kuhn-Tucker Conditions)是在优化问题中,特别是在具有约束条件的优化问题中,一个非常重要的概念。

  • KKT条件主要包括三个部分:
    1. 原问题的约束条件:包括等式约束和不等式约束。
    2. 拉格朗日函数的梯度为零:即∇_xL(x, λ, ν) = 0,其中L(x, λ, ν)是拉格朗日函数,λ和ν是拉格朗日乘子。
    3. 拉格朗日乘子的非负性:对于不等式约束,对应的拉格朗日乘子λ_i必须非负,即λ_i ≥ 0。
  • 公式表示(示例):
    • 对于一个标准优化问题(原问题):
      • min f_0(x)
      • s.t. f_i(x) ≤ 0, i = 1, ..., m
      • h_i(x) = 0, i = 1, ..., p
    • 对应的拉格朗日函数为:
      • L(x, λ, ν) = f_0(x) + ∑_{i=1}m λ_i f_i(x) + ∑_{i=1}p ν_i h_i(x)
      • 其中,λ_i ≥ 0 是对应不等式约束的拉格朗日乘子,ν_i 是对应等式约束的拉格朗日乘子。

4.2拉格朗日乘法

 支持向量机的目标函数与约束函数:

\underset{w,b}{argmin}\frac{1}{2}\left \| w \right \|^{2}

s.t.y_{i}(w^{T}x_{i}+b)\geq 1,i=1,2,...m

第一步:引入拉格朗日乘子a_{i}≥0得到拉格朗日函数
L(w,b,\alpha )=\frac{1}{2}\left \| w \right \|^{2}-\sum_{i=1}^{m}\alpha _{i}(y_{i}(w^Tx_{i}+b)-1)
第二步:令L(w,b,α)

w=\sum_{i=1}^{m}\alpha _{i}y_{i}x_{i}\sum_{i=1}^{m}\alpha _{i}y_{i}=0

第三步:w,b回代到第一步

\underset{\alpha }{min}\frac{1}{2}\sum_{i=1}^{j=1}\alpha _{i}\alpha _{j}y_{i}y_{j}x_{i}^Tx_{j}-\sum_{i=1}^{m}\alpha _{i}

\sum_{i=1}^{m}\alpha _{i}y_{i}=0,\alpha _{i}\geq 0,i=1,2,...,m

第四步:转换为对偶形式

\underset{\alpha }{max}\frac{1}{2}\sum_{i=1}^{m}\alpha _{i}-\sum_{i=1}^{m}\sum_{j=1}^{m}\alpha _{i}\alpha _{j}y_{i}y_{j}x_{i}^Tx_{j}

\sum_{i=1}^{m}\alpha _{i}y_{i}=0

第五步:最终模型

f(x)=w^Tx+b=\sum_{i=1}^{m}\alpha _{i}y_{i}x_{i}^Tx+b,其中未知数为a_{i}

五、核函数

        核函数(Kernel Function)是用于将输入空间中的数据点映射到特征空间中的函数。它通过某种非线性变换φ(x),将原始数据映射到高维空间,使得在这个高维空间中数据点之间的关系可能更加明显,从而更容易被线性算法处理。

5.1常用核函数

1、线性核。就表示原空间内积,适用于线性可分问题。
\kappa (x_{i},x_{j})=x_{i}^Tx_{j}
2、高斯核。适用于没有先验经验的非线性分类。其中σ越小,使得映射的维度越高。
 \kappa (x_{i},x_{j})=exp(-\frac{\left \| x_{i}-x_{j} \right \|^2}{2\sigma ^2})
3、多项式核。适用于没有先验经验的分类。其中d越越小,使得映射的维度越高。
\kappa (x_{i},x_{j})=(\alpha x_{i}^Tx_{j}+c)^d
4、Sigmoid核。此时SVM实现的就是一种多层感知器神经网络。
\kappa (x_{i},x_{j})=tanh(\alpha x_{i}^Tx_{j}+c)

5.2特点

线性核函数:简单,求解快,奥卡姆剃刀,可解释性强。

高斯核函数:可以映射到无限维,决策边界更多样,只有一个参数,更容易选择,特征多时会选用。但可解释性差,容易过拟合,计算速度较慢。

多项式核函数:可解决非线性问题,参数较多,对大数量级特征不适用。

Sigmoid核函数:主要用于神经网络。

六、SMO算法

        主要用于解决SVM目标函数的最优化问题,特别是当数据集规模较大时,SMO算法能够高效地找到最优解。

6.1基本思路

  1. 选择两个变量
    • 根据某种启发式方法(如序列最小化原则)选择两个变量进行优化。
  2. 求解子问题
    • 在固定其他变量的前提下,对选定的两个变量进行求解,得到新的值。
  3. 迭代优化
    • 不断重复步骤1和步骤2,直到满足终止条件(如达到最大迭代次数或函数值收敛)。

6.2应用简化版SMO算法结果图示

数据集:

SMO算法进行求解:

优化:

七、代码实例(鸢尾花分类测试)

7.1数据集介绍

        鸢尾花数据集是一个经典数据集,在统计学习和机器学习领域都经常被用作示例。数据集内包含 3 类共 150 条记录,每类各 50 个数据,每条记录都有 4 项特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度,可以通过这4个特征预测鸢尾花卉属于(iris-setosa, iris-versicolour, iris-virginica)三种中的哪一品种。

#数据内容

     sepal_len  sepal_wid  petal_len  petal_wid  label
0          5.1        3.5        1.4        0.2      0
1          4.9        3.0        1.4        0.2      0
2          4.7        3.2        1.3        0.2      0
3          4.6        3.1        1.5        0.2      0
4          5.0        3.6        1.4        0.2      0
..         ...        ...        ...        ...    ...
145        6.7        3.0        5.2        2.3      2
146        6.3        2.5        5.0        1.9      2
147        6.5        3.0        5.2        2.0      2
148        6.2        3.4        5.4        2.3      2
149        5.9        3.0        5.1        1.8      2

7.2代码实现

1.源代码:

import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
 
 
 
def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
 
    df.columns = ['sepal_len', 'sepal_wid', 'petal_len', 'petal_wid', 'label']
    print(df)
 
    data = np.array(df.iloc[:100, [0, 1, -1]])
 
    for i in range(len(data)):
        if data[i,-1] == 0:
            data[i,-1] = -1
 
    return data[:,:2], data[:,-1]
 
 
class SVM:
    def __init__(self, max_iter=100, kernel='poly'):
        self.max_iter = max_iter
        self._kernel = kernel
 
    def init_args(self, features, labels):
        self.m, self.n = features.shape
        self.X = features
        self.Y = labels
        self.b = 0.0
 
        # 将Ei保存在一个列表里
        self.alpha = np.ones(self.m)
        self.E = [self._E(i) for i in range(self.m)]
        # 松弛变量
        self.C = 1.0
 
    def _KKT(self, i):
        y_g = self._g(i)*self.Y[i]
        if self.alpha[i] == 0:
            return y_g >= 1
        elif 0 < self.alpha[i] < self.C:
            return y_g == 1
        else:
            return y_g <= 1
 
    # g(x)预测值,输入xi(X[i])
    def _g(self, i):
        r = self.b
        for j in range(self.m):
            r += self.alpha[j]*self.Y[j]*self.kernel(self.X[i], self.X[j])
        return r
 
    # 核函数
    def kernel(self, x1, x2):
        if self._kernel == 'linear':
            return sum([x1[k]*x2[k] for k in range(self.n)])
        elif self._kernel == 'poly':
            return (sum([x1[k]*x2[k] for k in range(self.n)]) + 1)**2
 
        return 0
 
    # E(x)为g(x)对输入x的预测值和y的差
    def _E(self, i):
        return self._g(i) - self.Y[i]
 
    def _init_alpha(self):
        # 外层循环首先遍历所有满足0<a<C的样本点,检验是否满足KKT
        index_list = [i for i in range(self.m) if 0 < self.alpha[i] < self.C]
        # 否则遍历整个训练集
        non_satisfy_list = [i for i in range(self.m) if i not in index_list]
        index_list.extend(non_satisfy_list)
 
        for i in index_list:
            if self._KKT(i):
                continue
 
            E1 = self.E[i]
            # 如果E2是+,选择最小的;如果E2是负的,选择最大的
            if E1 >= 0:
                j = min(range(self.m), key=lambda x: self.E[x])
            else:
                j = max(range(self.m), key=lambda x: self.E[x])
            return i, j
 
    def _compare(self, _alpha, L, H):
        if _alpha > H:
            return H
        elif _alpha < L:
            return L
        else:
            return _alpha
 
    def fit(self, features, labels):
        self.init_args(features, labels)
 
        for t in range(self.max_iter):
            # train
            i1, i2 = self._init_alpha()
 
            # 边界
            if self.Y[i1] == self.Y[i2]:
                L = max(0, self.alpha[i1]+self.alpha[i2]-self.C)
                H = min(self.C, self.alpha[i1]+self.alpha[i2])
            else:
                L = max(0, self.alpha[i2]-self.alpha[i1])
                H = min(self.C, self.C+self.alpha[i2]-self.alpha[i1])
 
            E1 = self.E[i1]
            E2 = self.E[i2]
            # eta=K11+K22-2K12
            eta = self.kernel(self.X[i1], self.X[i1]) + self.kernel(self.X[i2], self.X[i2]) - 2*self.kernel(self.X[i1], self.X[i2])
            if eta <= 0:
                # print('eta <= 0')
                continue
 
            alpha2_new_unc = self.alpha[i2] + self.Y[i2] * (E2 - E1) / eta
            alpha2_new = self._compare(alpha2_new_unc, L, H)
 
            alpha1_new = self.alpha[i1] + self.Y[i1] * self.Y[i2] * (self.alpha[i2] - alpha2_new)
 
            b1_new = -E1 - self.Y[i1] * self.kernel(self.X[i1], self.X[i1]) * (alpha1_new-self.alpha[i1]) - self.Y[i2] * self.kernel(self.X[i2], self.X[i1]) * (alpha2_new-self.alpha[i2])+ self.b
            b2_new = -E2 - self.Y[i1] * self.kernel(self.X[i1], self.X[i2]) * (alpha1_new-self.alpha[i1]) - self.Y[i2] * self.kernel(self.X[i2], self.X[i2]) * (alpha2_new-self.alpha[i2])+ self.b
 
            if 0 < alpha1_new < self.C:
                b_new = b1_new
            elif 0 < alpha2_new < self.C:
                b_new = b2_new
            else:
                # 选择中点
                b_new = (b1_new + b2_new) / 2
 
            # 更新参数
            self.alpha[i1] = alpha1_new
            self.alpha[i2] = alpha2_new
            self.b = b_new
 
            self.E[i1] = self._E(i1)
            self.E[i2] = self._E(i2)
        return 'train done!'
 
    def predict(self, data):
        r = self.b
        for i in range(self.m):
            r += self.alpha[i] * self.Y[i] * self.kernel(data, self.X[i])
 
        return 1 if r > 0 else -1
 
    def score(self, X_test, y_test):
        right_count = 0
        for i in range(len(X_test)):
            result = self.predict(X_test[i])
            if result == y_test[i]:
                right_count += 1
        return right_count / len(X_test)
 
    def _weight(self):
        # linear model
        yx = self.Y.reshape(-1, 1)*self.X
        self.w = np.dot(yx.T, self.alpha)
        return self.w
 
 
X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
 
 
svm = SVM(max_iter=800)
print(svm.fit(X_train, y_train))
print(svm.score(X_train, y_train))
print(svm.score(X_test, y_test))

2.基于sklearn的代码实现

import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
 
 
def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    data = np.array(df.iloc[:100, [0, 1, -1]])
    for i in range(len(data)):
        if data[i,-1] == 0:
            data[i,-1] = -1
    return data[:,:2], data[:,-1]
 
 
X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
 
 
plt.scatter(X[:50,0],X[:50,1], label='0')
plt.scatter(X[50:,0],X[50:,1], label='1')
plt.show()
 
 
model = SVC()
model.fit(X_train, y_train)
 
SVC(C=1.0, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf',
    max_iter=-1, probability=False, random_state=None, shrinking=True,
    tol=0.001, verbose=False)
 
 
print('train accuracy: ' + str(model.score(X_train, y_train)))
print('test accuracy: ' + str(model.score(X_test, y_test)))

7.3运行结果

1.数据分布

2.训练集和测试集上的准确性

train accuracy: 1.0
test accuracy: 0.96

八、问题及总结

8.1问题

运行时报错

ValueError:setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part.

解决方法:降低numpy版本后成功运行。

8.2总结

支持向量机(SVM)是一种强大的监督学习算法,用于分类和回归分析。以下是关于SVM的总结:

  1. 目标:SVM的主要目标是找到一个最佳的超平面,能够将数据集中的不同类别分开,并且使得边界(或者称为间隔)尽可能地远离训练数据点,从而提高泛化能力。

  2. 核函数:SVM可以使用核函数来处理非线性可分的数据。常见的核函数包括线性核、多项式核和高斯径向基函数(RBF)核。

  3. 支持向量:在SVM中,支持向量是指离超平面最近的那些数据点,它们对于定义决策边界起着关键作用。由支持向量决定了最终的超平面位置。

  4. 软间隔与硬间隔:SVM可以通过软间隔来处理一些噪声数据或者存在一定程度重叠的情况,这时允许一些数据点落在间隔内部,但会引入惩罚项来控制错误分类的数量。

  5. 正则化参数:SVM中的正则化参数C用于平衡间隔的最大化和误分类的惩罚,较大的C会导致更严格地要求所有样本都正确分类,而较小的C会允许一些样本被错分。

  6. 多类别分类:SVM最初是为二元分类设计的,但可以通过一对一或一对其他的方法扩展到多类别分类问题。

        总的来说,SVM是一种多功能的机器学习算法,它在处理小样本、非线性和高维数据上表现出色,并且具有很强的泛化能力。然而,SVM的计算复杂度随着训练集大小的增加而显著增加,因此在处理大规模数据时需要谨慎使用。

  • 30
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值