复变函数论2-解析函数1-1-解析函数的概念1:复变函数的导数与微分【可导=可微】【f在z处可导/可微则一定连续;在z处连续不一定可导/可微】【f在z处可导/可微要满足以任意方式趋于z的极限值都相同】

该章节探讨了复变函数的可微性和导数定义,强调在复平面上函数可导的条件更为严格,要求沿任意路径趋近时导数的极限存在且相等。解析函数的导数和微分定义与实变函数类似,但连续性并不确保可微性。举例说明了某些函数的可微性和不可微性特性。
摘要由CSDN通过智能技术生成

这一章,研究复变函数的微分.

解析函数是复变函数论研究的主要对象, 它是一类具有某种特性的可微函数.

  • 首先, 我们引入判断函数可微和解析的主要条件一一柯西一黎曼方程;
  • 其次,把我们在实数域上熟知的初等函数推广到复数域上来, 并研究其性质.

一、复变函数的导数与微分

在这里插入图片描述

定义 2.1

设函数 w = f ( z ) w=f(z) w=f(z) 在点 z 0 z_{0} z0 的邻域内或包含 z 0 z_{0} z0 的区域 D D D内有定义,考虑比值

Δ w Δ z = f ( z ) − f ( z 0 ) z − z 0 = f ( z 0 + Δ z ) − f ( z 0 ) Δ z ( Δ z ≠ 0 ) . \frac{\Delta w}{\Delta z}=\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=\frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z} \quad(\Delta z \neq 0) . ΔzΔw=zz0f(z)f(z0)=Δzf(z0+Δz)f(z0)(Δz=0).

如果当 z z z 按任意方式趋于 z 0 z_{0} z0, 即当 Δ z \Delta z Δz 按任意方式趋于零时,比值 Δ w / Δ z \Delta w / \Delta z Δwz 的极限都存在, 且其值有限, 则称此极限为函数 f ( z ) f(z) f(z) 在点 z 0 z_{0} z0 的导数, 并记为 f ′ ( z 0 ) f^{\prime}\left(z_{0}\right) f(z0), 即

f ′ ( z 0 ) = lim ⁡ Δ z → 0 Δ w Δ z = lim ⁡ z → z 0 f ( z ) − f ( z 0 ) z − z 0 ( 2.1 ) f^{\prime}\left(z_{0}\right)=\lim \limits_{\Delta z \rightarrow 0} \frac{\Delta w}{\Delta z}=\lim \limits_{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\quad\quad(2.1) f<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值