连续 可导 可微
1.定义
1.1 连续的定义
-
定义1
设y = f(x) 在点 x 0 x_0 x0 的某领域内有定义,若
lim Δ x → 0 Δ y = lim Δ x → 0 [ f ( x 0 + Δ x ) − f ( x 0 ) ] = 0 \displaystyle \lim_{Δx \to 0} Δy = \lim_{Δx \to 0}[f(x_0 + Δx) - f(x_0)] = 0 Δx→0limΔy=Δx→0lim[f(x0+Δx)−f(x0)]=0
则称 y = f(x)在点 x 0 x_0 x0处连续
-
定义2
设y = f(x) 在点 x 0 x_0 x0 的某领域内有定义,若
lim Δ x → 0 f ( x ) = f ( x 0 ) \displaystyle \lim_{Δx \to 0}f(x) = f(x_0) Δx→0limf(x)=f(x0)
则称y = f(x)在 x 0 x_0 x0处连续
1.2 可导的定义
设y = f(x) 在点 x 0 x_0 x0 的某领域内有定义,如果极限
lim Δ x → 0 Δ y Δ x = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x \displaystyle \lim_{Δx \to 0} \frac{Δy}{Δx} = \lim_{Δx \to 0} \frac{f(x_0 + Δx) - f(x_0)}{Δx} Δx→0limΔxΔy=Δx→0lim