【高等数学】连续可导可微(定义+证明+记忆方法)

本文详细解析了连续、可导和可微在函数分析中的概念,证明了它们之间的关系,并提供了记忆技巧。通过实例和反例说明了可导与连续的区别,以及如何理解它们在高等数学中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

连续 可导 可微

1.定义

1.1 连续的定义

  1. 定义1

    设y = f(x) 在点 x 0 x_0 x0 的某领域内有定义,若

    lim ⁡ Δ x → 0 Δ y = lim ⁡ Δ x → 0 [ f ( x 0 + Δ x ) − f ( x 0 ) ] = 0 \displaystyle \lim_{Δx \to 0} Δy = \lim_{Δx \to 0}[f(x_0 + Δx) - f(x_0)] = 0 Δx0limΔy=Δx0lim[f(x0+Δx)f(x0)]=0

    则称 y = f(x)在点 x 0 x_0 x0处连续

  2. 定义2

    设y = f(x) 在点 x 0 x_0 x0 的某领域内有定义,若

    lim ⁡ Δ x → 0 f ( x ) = f ( x 0 ) \displaystyle \lim_{Δx \to 0}f(x) = f(x_0) Δx0limf(x)=f(x0)

    则称y = f(x)在 x 0 x_0 x0处连续

1.2 可导的定义

设y = f(x) 在点 x 0 x_0 x0 的某领域内有定义,如果极限

lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x \displaystyle \lim_{Δx \to 0} \frac{Δy}{Δx} = \lim_{Δx \to 0} \frac{f(x_0 + Δx) - f(x_0)}{Δx} Δx0limΔxΔy=Δx0lim

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值