路径规划 Day1 引言

移动机器人导航需要解决如下三个问题:我在哪?我要去哪?我怎么去那?这三个问题分别对应移动机器人导航中的定位、建图和路径规划功能。移动机器人在移动时需要一张环境的地图,用以确定移动机器人在目前运动环境中的方向和位置。地图可以是提前人为给定的,也可以是移动机器人在移动过程中逐步自己建立的。而路径规划就是在移动机器人事先知道目标相对位置的情况下,为机器人找到一条从起点移动到终点的合适路径,它在移动的同时还要避开环境中分散的障碍物,尽量减少路径长度。

在路径规划中,有三个需要考虑的主要问题:效率、准确性和安全性。移动机器人应该在尽可能短的时间内,消耗最少的能量,安全的避开障碍物找到目标。如图所示,图中机器人可通过传感器来感知自身和环境的信息,确定自身在地图中的当前位置及周围局部范围内的障碍物分布情况,在目标位置已知的情况下,躲避障碍物,行进至目标位置。

根据移动机器人对环境的了解情况、环境性质以及使用的算法可将路径规划分为基于环境的、基于地图知识的和基于完备性的路径规划算法三类,如图所示

  • 环境情况:移动机器人的环境可以分为静态环境和动态环境。在静态环境中,起点和目标位置是固定的,障碍物也不会随时间改变位置。在动态环境中,障碍物和目标的位置在搜索过程中可能会发生变化。通常,由于环境的不确定性,动态环境中的路径规划比静态环境中的更加复杂。实际环境也通常都是未知变化的,路径规划算法需要适应环境未知的变化,例如突然出现的障碍物或者是目标在持续移动时。当障碍物和目标都在变化时,由于算法必须对目标和障碍物的移动实时做出响应,路径规划就更加困难了。
  • 完备性:根据完备性,可将路径规划算法分为精确的算法和启发式算法。如果最优解存在或者证明不存在可行解,那么精确的算法可以找到一个最优的解决方案。而启发式算法能在较短的时间内寻找高质量的解决方案。
  • 地图知识:移动机器人路径规划基本上是依靠现有的地图作为参考,来确定初始位置和目标位置以及它们之间的联系。地图的信息量对路径规划算法的设计起着重要的作用。根据对环境的了解情况,路径规划可以分为全局路径规划和局部路径规划。其中,全局路径规划需要知道关于环境的所有信息,根据环境地图进行全局的路径规划,并产生一系列关键点作为子目标点下达给局部路径规划系统。在局部路径规划中,移动机器人缺乏环境的先验知识,在搜索过程中,必须实时感知障碍物的位置,构建局部环境的估计地图,并获得通往目标位置的合适路径。

全局路径规划与局部路径规划区别

移动机器人导航通过路径规划使其可以到达目标点,导航规划层可以分为:全局路径规划层;局部路径规划层;行为执行层等。

  • 全局路径规划(global planner)层:依据给点的目标,接受权值地图信息生成全局权值地图,规划出从起点到目标位置的全局路径,作为局部路径规划的参考。
  • 局部路径规划(local planner)层:作为导航系统的局部规划部分,接受权值地图生成的局部权值地图信息,依据附近的障碍物信息进行局部路径规划。
  • 行为执行层:结合上层发送的指令以及路径规划,给出移动机器人的当前行为。

作为移动机器人研究的一个重点领域,移动机器人路径规划算法的优劣很大程度上决定了机器人的工作效率。随着机器人路径规划研究的不断深入,路径规划算法也越来越成熟,并且朝着下面的趋势不断发展中: 从单一机器人移动路径规划算法向多种算法相结合的方向发展。目前的路径规划方法每一种都有其优缺点,研究新的算法的同时可以考虑将两种或两种以上算法结合起来,取长补短,克服缺点,使优势更加明显,效率更高。 从单个机器人路径规划到多机器人协调路径规划发展。随着机器人特别是移动机器人越来越多的投入到各个行业中,路径规划不再仅仅局限于一台移动机器人,而是多个移动机器人的协调运作。多个机器人信息资源共享,对于路径规划方面是一大进步。 如何更好的处理多个移动机器人的、路径规划问题是研究者需要重点研究的问题。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值