水稻害虫检测检测系统源码分享 # [一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]

水稻害虫检测检测系统源码分享

[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]

1.研究背景与意义

项目参考AAAI Association for the Advancement of Artificial Intelligence

研究背景与意义

水稻是全球范围内重要的粮食作物之一,尤其在亚洲地区,其种植面积和产量占据了世界的相当大比例。然而,水稻生产面临着诸多挑战,其中水稻害虫的侵袭是影响水稻产量和品质的主要因素之一。根据统计,水稻害虫的损失可达全球水稻产量的10%至30%。因此,及时、准确地识别和监测水稻害虫,对于保障水稻的高产和可持续发展具有重要的现实意义。

近年来,随着计算机视觉和深度学习技术的迅猛发展,基于图像识别的害虫检测系统逐渐成为研究的热点。YOLO(You Only Look Once)系列模型因其高效的实时检测能力,广泛应用于物体检测领域。YOLOv8作为该系列的最新版本,具有更高的准确性和更快的处理速度,为水稻害虫的自动检测提供了新的可能性。然而,现有的YOLOv8模型在特定领域应用时,仍需进行针对性的改进,以适应不同环境和数据集的特征。

本研究旨在基于改进的YOLOv8模型,构建一个高效的水稻害虫检测系统。我们使用的数据集包含3156张图像,涵盖了10类水稻害虫,包括亚洲水稻螟、褐飞虱、稻茎蛆、稻蓟马、稻叶虫、稻叶跳虫、稻叶卷虫、水稻水象甲、小褐飞虱和黄水稻螟。这些数据不仅为模型的训练提供了丰富的样本,也为后续的模型评估和优化奠定了基础。

通过对YOLOv8模型的改进,我们期望能够提升其在水稻害虫检测中的准确性和鲁棒性。这一改进不仅包括网络结构的优化,还将结合数据增强、迁移学习等技术,以提高模型在复杂环境下的适应能力。此外,研究还将探索不同特征提取方法对检测效果的影响,力求在保证检测速度的同时,最大限度地提高检测精度。

本研究的意义不仅在于推动水稻害虫检测技术的发展,更在于为农业生产提供一种智能化、自动化的解决方案。通过实现高效的害虫监测,农民可以及时采取防治措施,从而减少化学农药的使用,降低环境污染,促进可持续农业的发展。此外,该系统的成功应用还可以为其他农作物的害虫检测提供借鉴,具有广泛的推广价值。

综上所述,基于改进YOLOv8的水稻害虫检测系统的研究,不仅填补了现有技术在特定领域应用中的空白,也为未来农业智能化发展提供了新的思路和方法。通过深入探索水稻害虫的自动检测技术,我们期待能够为全球粮食安全和可持续农业发展贡献一份力量。

2.图片演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注意:由于此博客编辑较早,上面“2.图片演示”和“3.视频演示”展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)

(1)适配了YOLOV8的“目标检测”模型和“实例分割”模型,通过加载相应的权重(.pt)文件即可自适应加载模型。

(2)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别模式。

(3)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到。

(4)支持Web前端系统中的标题、背景图等自定义修改,后面提供修改教程。

另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。

3.视频演示

3.1 视频演示

4.数据集信息展示

数据集信息展示

在现代农业中,水稻作为全球重要的粮食作物,其产量和质量直接影响到粮食安全和农民的生计。然而,水稻害虫的侵扰对水稻的生长构成了严重威胁,因此,开发高效的害虫检测系统显得尤为重要。本数据集“rice-pest-bb”专为改进YOLOv8模型在水稻害虫检测任务中的应用而设计,旨在提升检测的准确性和效率。

该数据集包含3156幅高质量的图像,涵盖了10个不同的水稻害虫类别。这些类别包括:亚洲水稻螟(asiatic_rice_borer)、褐飞虱(brown_plant_hopper)、稻茎虫(paddy_stem_maggot)、稻蓟马(rice_gall_midge)、水稻叶虫(rice_leaf_caterpillar)、水稻叶蝉(rice_leaf_hopper)、水稻叶卷虫(rice_leaf_roller)、水稻水象甲(rice_water_weevil)、小褐飞虱(small_brown_plant_hopper)以及黄水稻螟(yellow_rice_borer)。这些害虫在不同的生长阶段对水稻造成不同程度的损害,因此,能够准确识别和分类这些害虫是实现精准农业的关键。

数据集中的图像经过精心挑选和标注,确保了其在训练深度学习模型时的有效性和可靠性。每一类害虫的图像均具有多样性,涵盖了不同的拍摄角度、光照条件和背景环境。这种多样性不仅增强了模型的泛化能力,还提高了其在实际应用中的适应性。通过使用此数据集,研究人员和开发者可以有效地训练YOLOv8模型,使其能够在实际田间环境中快速、准确地识别水稻害虫。

此外,该数据集采用了CC BY 4.0许可证,允许用户在遵循相关规定的前提下自由使用、修改和分发数据。这种开放性为学术界和工业界的研究人员提供了便利,使他们能够在此基础上进行进一步的研究和开发。通过共享数据集,研究人员可以更好地合作,推动水稻害虫检测技术的进步。

在训练过程中,使用者可以根据具体需求对数据集进行增强处理,例如调整图像的大小、旋转、翻转等,以提高模型的鲁棒性。数据集中的“bb_augmented_320_3x”版本为用户提供了额外的增强选项,使得模型在面对复杂的实际环境时,能够保持高效的检测性能。

总之,数据集“rice-pest-bb”不仅为水稻害虫检测提供了丰富的图像数据,还为改进YOLOv8模型的训练奠定了坚实的基础。通过充分利用这一数据集,研究人员能够更深入地探索水稻害虫的特征与行为,从而为农业生产提供科学依据,助力实现更高效的害虫管理和水稻种植。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.全套项目环境部署视频教程(零基础手把手教学)

5.1 环境部署教程链接(零基础手把手教学)

5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)

6.手把手YOLOV8训练视频教程(零基础小白有手就能学会)

6.1 环境部署教程链接(零基础手把手教学)

7.70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

7.1 环境部署教程链接(零基础手把手教学)

8.70+种全套YOLOV8创新点原理讲解(非科班也可以轻松写刊发刊,V10版本正在科研待更新)

由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:

9.png

8.1 70+种全套YOLOV8创新点原理讲解链接

9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)

图1.系统支持检测结果表格显示

图2.系统支持置信度和IOU阈值手动调节

图3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)

图4.系统支持摄像头实时识别

图5.系统支持图片识别

图6.系统支持视频识别

图7.系统支持识别结果文件自动保存

图8.系统支持Excel导出检测结果数据

10.png

11.png

12.png

13.png

14.png

15.png

16.png

17.png

10.原始YOLOV8算法原理

原始YOLOv8算法原理

YOLOv8算法是Ultralytics公司在2023年推出的目标检测领域的重大进展,建立在以往YOLO系列的成功基础上,融入了诸多创新和改进,使其在性能和灵活性上都得到了显著提升。YOLOv8的设计理念是快速、准确且易于使用,适用于目标检测、图像分割和图像分类等多种任务。其网络结构主要由输入层、主干网络(Backbone)、特征增强网络(Neck)和输出层(Head)四个部分组成。

在输入层,YOLOv8默认接收640x640像素的图像,但为了适应不同长宽比的图像,算法采用了自适应图片缩放技术。这种技术的核心思想是将图像的长边按比例缩小到指定尺寸,然后对短边进行填充,以减少信息冗余和提高推理速度。此外,YOLOv8在训练过程中引入了Mosaic图像增强技术,该技术通过随机选择四张图像进行缩放和拼接,生成新的训练样本。这种增强方式不仅提高了模型对不同位置和周围像素的学习能力,还有效提升了预测精度。

YOLOv8的主干网络部分采用了C2F模块,取代了YOLOv5中的C3模块。C2F模块通过并行化更多的梯度流分支,确保了轻量化的同时获得了更丰富的梯度信息。这种设计灵感来源于YOLOv7中的ELAN模块,旨在提高模型的精度和延迟表现。C2F模块的引入,使得YOLOv8在特征提取过程中能够更有效地捕捉多尺度信息,进而提升目标检测的准确性。

在特征增强网络(Neck)部分,YOLOv8采用了PAN-FPN(Path Aggregation Network with Feature Pyramid Network)的思想,通过上采样和下采样操作对不同尺度的特征图进行融合。这种设计使得YOLOv8能够更好地处理多尺度目标,提高了对小目标的检测能力。与YOLOv5相比,YOLOv8在Neck部分的结构更为简化,去除了多余的卷积连接层,直接对Backbone不同阶段输出的特征进行上采样,进一步提升了计算效率。

YOLOv8的输出层(Head)是其最显著的创新之一。该部分从传统的耦合头(Coupled-Head)转变为解耦头(Decoupled-Head),将分类和回归任务分为两个独立的分支。这种解耦设计使得每个任务可以更加专注于自身的目标,解决了复杂场景下定位不准和分类错误的问题。在损失函数的设计上,YOLOv8摒弃了Obj分支,采用了BCELoss(Binary Cross Entropy Loss)进行分类损失计算,并在边界框回归分支中使用了DFL(Distribution Focal Loss)和CIoULoss(Complete Intersection over Union Loss),旨在使网络快速聚焦于标签附近的数值,提高预测的准确性。

值得注意的是,YOLOv8引入了Anchor-Free的目标检测方法,摒弃了传统的Anchor-Based思想。传统方法依赖于预设的锚框来预测目标位置,虽然这种方法在一定程度上提高了模型的精准度和召回率,但也增加了计算复杂度,并且在处理不同尺度和形状的目标时缺乏灵活性。YOLOv8通过将目标检测转化为关键点检测,直接预测目标的位置和大小,使得网络能够更快地聚焦于目标区域,从而提升了检测速度和精度。

YOLOv8在训练时间和检测精度上都得到了显著提升,其模型权重文件的轻量化设计使得其能够在各种嵌入式设备上部署,满足实时检测的需求。与之前的YOLO版本相比,YOLOv8不仅在精度上有了显著提高,还在计算效率上表现出色,能够处理更复杂的目标检测任务。

总的来说,YOLOv8通过引入自适应图片缩放、Mosaic增强、C2F模块、PAN-FPN结构、解耦头和Anchor-Free方法等一系列创新,极大地提升了目标检测的性能和灵活性。其设计理念和技术创新使得YOLOv8成为了目标检测领域的一个重要里程碑,为后续的研究和应用提供了强有力的支持。

18.png

11.项目核心源码讲解(再也不用担心看不懂代码逻辑)

11.1 ui.py

以下是经过简化和注释的核心代码:

import sys
import subprocess
from QtFusion.path import abs_path

def run_script(script_path):
    """
    使用当前 Python 环境运行指定的脚本。

    Args:
        script_path (str): 要运行的脚本路径
    """
    # 获取当前 Python 解释器的路径
    python_path = sys.executable

    # 构建运行命令,使用 streamlit 运行指定的脚本
    command = f'"{python_path}" -m streamlit run "{script_path}"'

    # 执行命令并等待其完成
    result = subprocess.run(command, shell=True)
    
    # 检查命令执行结果,如果返回码不为0,则表示出错
    if result.returncode != 0:
        print("脚本运行出错。")

# 主程序入口
if __name__ == "__main__":
    # 指定要运行的脚本路径
    script_path = abs_path("web.py")

    # 调用函数运行脚本
    run_script(script_path)

代码注释说明:

  1. 导入模块

    • sys:用于获取当前 Python 解释器的路径。
    • subprocess:用于执行外部命令。
    • abs_path:从 QtFusion.path 导入的函数,用于获取脚本的绝对路径。
  2. run_script 函数

    • 接受一个参数 script_path,表示要运行的 Python 脚本的路径。
    • 使用 sys.executable 获取当前 Python 解释器的路径。
    • 构建一个命令字符串,使用 streamlit 运行指定的脚本。
    • 使用 subprocess.run 执行命令,并等待其完成。
    • 检查命令的返回码,如果不为0,表示脚本运行出错,打印错误信息。
  3. 主程序入口

    • 当脚本作为主程序运行时,指定要运行的脚本路径(web.py)。
    • 调用 run_script 函数来执行该脚本。

这个程序文件 ui.py 的主要功能是通过当前的 Python 环境来运行一个指定的脚本,具体来说是一个名为 web.py 的脚本。文件中首先导入了一些必要的模块,包括 sysossubprocess,这些模块提供了与系统交互和执行外部命令的功能。此外,还导入了 QtFusion.path 模块中的 abs_path 函数,用于获取文件的绝对路径。

run_script 函数中,首先获取当前 Python 解释器的路径,这通过 sys.executable 实现。接着,构建一个命令字符串,这个命令使用 streamlit 来运行指定的脚本。具体来说,命令的格式是将 Python 解释器的路径和要运行的脚本路径组合在一起,形成一个完整的命令。

然后,使用 subprocess.run 方法来执行这个命令。该方法会在一个新的进程中运行命令,并等待其完成。命令执行后,会检查返回码,如果返回码不为 0,表示脚本运行过程中出现了错误,此时会打印出“脚本运行出错”的提示信息。

在文件的最后部分,使用 if __name__ == "__main__": 语句来确保当这个文件作为主程序运行时,才会执行下面的代码。在这里,首先调用 abs_path 函数来获取 web.py 的绝对路径,然后调用 run_script 函数来运行这个脚本。

总的来说,这个文件的主要目的是提供一个简单的接口来运行一个特定的 Python 脚本,并处理可能出现的错误。

11.2 ultralytics\models\sam\amg.py

以下是代码中最核心的部分,并附上详细的中文注释:

import torch

def is_box_near_crop_edge(
    boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0
) -> torch.Tensor:
    """
    判断给定的边界框是否接近裁剪边缘。

    参数:
    boxes: 要检查的边界框,格式为 (x1, y1, x2, y2) 的张量。
    crop_box: 当前裁剪框的边界,格式为 [x0, y0, x1, y1]。
    orig_box: 原始图像的边界框,格式为 [x0, y0, x1, y1]。
    atol: 允许的绝对误差,默认为 20.0。

    返回:
    返回一个布尔张量,指示每个边界框是否接近裁剪边缘。
    """
    # 将裁剪框和原始框转换为张量
    crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
    orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
    
    # 将边界框从裁剪坐标转换回原始坐标
    boxes = uncrop_boxes_xyxy(boxes, crop_box).float()
    
    # 检查边界框是否接近裁剪框的边缘
    near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
    # 检查边界框是否接近原始图像的边缘
    near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
    
    # 只有当边界框接近裁剪边缘且不接近原始图像边缘时,才返回 True
    near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
    
    # 如果有任何边界框接近裁剪边缘,则返回 True
    return torch.any(near_crop_edge, dim=1)


def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
    """
    将裁剪的边界框转换回原始图像坐标。

    参数:
    boxes: 裁剪后的边界框,格式为 (x1, y1, x2, y2) 的张量。
    crop_box: 当前裁剪框的边界,格式为 [x0, y0, x1, y1]。

    返回:
    返回转换后的边界框,格式为 (x1, y1, x2, y2) 的张量。
    """
    x0, y0, _, _ = crop_box  # 获取裁剪框的左上角坐标
    offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device)  # 创建偏移量张量
    
    # 检查 boxes 是否有通道维度
    if len(boxes.shape) == 3:
        offset = offset.unsqueeze(1)  # 如果有通道维度,则扩展偏移量的维度
    
    # 将偏移量加到 boxes 上,返回未裁剪的边界框
    return boxes + offset


def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor:
    """
    计算给定掩码的边界框,返回格式为 (x1, y1, x2, y2)。

    参数:
    masks: 输入掩码,形状为 C1xC2x...xHxW。

    返回:
    返回形状为 C1xC2x...x4 的边界框张量。
    """
    # 如果掩码为空,则返回 [0, 0, 0, 0]
    if torch.numel(masks) == 0:
        return torch.zeros(*masks.shape[:-2], 4, device=masks.device)

    # 规范化形状为 CxHxW
    shape = masks.shape
    h, w = shape[-2:]
    masks = masks.flatten(0, -3) if len(shape) > 2 else masks.unsqueeze(0)
    
    # 获取掩码的上下边缘
    in_height, _ = torch.max(masks, dim=-1)
    in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :]
    bottom_edges, _ = torch.max(in_height_coords, dim=-1)
    in_height_coords = in_height_coords + h * (~in_height)
    top_edges, _ = torch.min(in_height_coords, dim=-1)

    # 获取掩码的左右边缘
    in_width, _ = torch.max(masks, dim=-2)
    in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :]
    right_edges, _ = torch.max(in_width_coords, dim=-1)
    in_width_coords = in_width_coords + w * (~in_width)
    left_edges, _ = torch.min(in_width_coords, dim=-1)

    # 如果掩码为空,则将边界框替换为 [0, 0, 0, 0]
    empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
    out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
    out = out * (~empty_filter).unsqueeze(-1)

    # 返回到原始形状
    return out.reshape(*shape[:-2], 4) if len(shape) > 2 else out[0]

代码核心部分说明:

  1. is_box_near_crop_edge: 判断边界框是否接近裁剪框的边缘,并确保不接近原始图像的边缘。
  2. uncrop_boxes_xyxy: 将裁剪后的边界框转换回原始图像坐标。
  3. batched_mask_to_box: 从掩码中计算边界框,返回格式为 (x1, y1, x2, y2)。

这些函数是处理图像裁剪和边界框生成的核心逻辑,适用于目标检测等计算机视觉任务。

这个程序文件主要实现了一些与图像处理和深度学习相关的功能,特别是在目标检测和分割任务中使用的功能。文件中包含多个函数,每个函数都有其特定的用途,以下是对这些函数的逐一说明。

首先,is_box_near_crop_edge函数用于判断给定的边界框是否接近裁剪边缘。它接收三个参数:boxes(待检测的边界框)、crop_box(裁剪区域的边界框)和orig_box(原始图像的边界框)。函数通过计算边界框与裁剪边缘的距离,并返回一个布尔张量,指示哪些边界框接近裁剪边缘。

接下来的batch_iterator函数用于从输入参数中生成批次数据。它确保所有输入参数的长度相同,并根据指定的批次大小返回数据的批次。

calculate_stability_score函数计算一组掩膜的稳定性得分。稳定性得分是通过对掩膜进行阈值处理后计算的交并比(IoU),用于评估掩膜的质量。

build_point_grid函数生成一个二维网格,网格中的点均匀分布在[0,1]x[0,1]的范围内。build_all_layer_point_grids函数则为不同层次生成多个点网格,适用于多尺度的图像处理。

generate_crop_boxes函数生成不同大小的裁剪框,适用于图像的多层次处理。它根据图像的尺寸、层数和重叠比例生成裁剪框的列表。

uncrop_boxes_xyxyuncrop_pointsuncrop_masks函数用于将裁剪后的边界框、点和掩膜还原到原始图像的坐标系中。它们通过添加裁剪框的偏移量来实现这一点。

remove_small_regions函数用于去除掩膜中小的、不连通的区域或孔洞。它使用OpenCV库中的连通组件分析来实现这一功能,并返回处理后的掩膜和一个指示是否进行了修改的布尔值。

batched_mask_to_box函数用于计算掩膜周围的边界框,返回格式为XYXY。该函数处理多维输入,并确保即使在掩膜为空的情况下也能返回有效的边界框。

总体而言,这个文件提供了一系列用于图像处理和目标检测的工具函数,涵盖了从裁剪、还原到掩膜处理等多个方面,为后续的深度学习模型训练和推理提供了支持。

11.3 ultralytics\engine\predictor.py

以下是代码中最核心的部分,并附上详细的中文注释:

class BasePredictor:
    """
    BasePredictor类用于创建预测器的基类。

    属性:
        args (SimpleNamespace): 预测器的配置。
        save_dir (Path): 保存结果的目录。
        done_warmup (bool): 预测器是否完成初始化。
        model (nn.Module): 用于预测的模型。
        data (dict): 数据配置。
        device (torch.device): 用于预测的设备。
        dataset (Dataset): 用于预测的数据集。
    """

    def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
        """
        初始化BasePredictor类。

        参数:
            cfg (str, optional): 配置文件的路径,默认为DEFAULT_CFG。
            overrides (dict, optional): 配置覆盖,默认为None。
        """
        self.args = get_cfg(cfg, overrides)  # 获取配置
        self.save_dir = get_save_dir(self.args)  # 获取保存目录
        if self.args.conf is None:
            self.args.conf = 0.25  # 默认置信度阈值为0.25
        self.done_warmup = False  # 初始化状态
        self.model = None  # 模型初始化为None
        self.data = self.args.data  # 数据配置
        self.device = None  # 设备初始化为None
        self.dataset = None  # 数据集初始化为None
        self.callbacks = _callbacks or callbacks.get_default_callbacks()  # 获取回调函数

    def preprocess(self, im):
        """
        在推理之前准备输入图像。

        参数:
            im (torch.Tensor | List(np.ndarray)): 输入图像,可以是张量或图像列表。
        
        返回:
            torch.Tensor: 处理后的图像张量。
        """
        not_tensor = not isinstance(im, torch.Tensor)  # 检查输入是否为张量
        if not_tensor:
            im = np.stack(self.pre_transform(im))  # 预处理图像
            im = im[..., ::-1].transpose((0, 3, 1, 2))  # BGR转RGB,并调整维度
            im = np.ascontiguousarray(im)  # 确保数组是连续的
            im = torch.from_numpy(im)  # 转换为张量

        im = im.to(self.device)  # 将图像移动到指定设备
        im = im.half() if self.model.fp16 else im.float()  # 转换数据类型
        if not_tensor:
            im /= 255  # 将像素值归一化到0.0 - 1.0
        return im

    def inference(self, im, *args, **kwargs):
        """对给定图像进行推理。"""
        return self.model(im, *args, **kwargs)  # 使用模型进行推理

    def stream_inference(self, source=None, model=None, *args, **kwargs):
        """对摄像头输入进行实时推理并保存结果。"""
        if not self.model:
            self.setup_model(model)  # 设置模型

        self.setup_source(source if source is not None else self.args.source)  # 设置数据源

        for batch in self.dataset:  # 遍历数据集
            im = self.preprocess(batch[1])  # 预处理图像
            preds = self.inference(im, *args, **kwargs)  # 进行推理
            self.results = self.postprocess(preds, im, batch[1])  # 后处理结果

            # 可视化、保存、写入结果
            for i in range(len(batch[1])):
                self.write_results(i, self.results, batch)  # 写入结果

    def setup_model(self, model, verbose=True):
        """初始化YOLO模型并设置为评估模式。"""
        self.model = AutoBackend(
            model or self.args.model,
            device=select_device(self.args.device, verbose=verbose),
            fp16=self.args.half,
            fuse=True,
            verbose=verbose,
        )
        self.device = self.model.device  # 更新设备
        self.model.eval()  # 设置模型为评估模式

    def write_results(self, idx, results, batch):
        """将推理结果写入文件或目录。"""
        # 处理结果并保存
        # 这里可以添加具体的保存逻辑

代码核心部分说明

  1. BasePredictor类:这是一个用于预测的基类,包含了初始化、预处理、推理、流式推理、模型设置和结果写入等方法。
  2. __init__方法:初始化预测器的配置和状态。
  3. preprocess方法:对输入图像进行预处理,包括格式转换和归一化。
  4. inference方法:调用模型进行推理。
  5. stream_inference方法:处理实时视频流的推理逻辑。
  6. setup_model方法:初始化YOLO模型并设置为评估模式。
  7. write_results方法:将推理结果保存到指定位置。

这些方法和类构成了YOLO模型进行推理的核心逻辑。

这个程序文件是一个用于进行目标检测的预测器,主要是基于Ultralytics YOLO(You Only Look Once)模型。该文件提供了在多种来源(如图像、视频、网络摄像头等)上进行预测的功能,并且支持多种模型格式。

在文件的开头,程序提供了使用说明,包括如何指定不同的输入源和模型格式。支持的输入源包括本地文件、网络流、YouTube视频等,而支持的模型格式则包括PyTorch、ONNX、TensorRT等多种格式。

程序的核心是BasePredictor类,该类负责初始化预测器的配置、模型、数据等。初始化时,会读取配置文件,设置保存结果的目录,并进行一些基本的参数设置,如置信度阈值等。类中还定义了一些属性,用于存储模型、数据集、视频路径、写入器等信息。

BasePredictor类的主要方法包括:

  • preprocess:对输入图像进行预处理,将其转换为适合模型输入的格式。
  • inference:执行模型推理,得到预测结果。
  • write_results:将推理结果写入文件或目录,包括保存检测框、分割掩码等。
  • postprocess:对预测结果进行后处理,通常用于格式转换或结果筛选。
  • __call__:使得类的实例可以像函数一样被调用,执行推理。
  • stream_inference:在实时流中进行推理,适用于视频流或摄像头输入。

此外,程序还实现了对模型的设置、源的配置、结果的可视化和保存等功能。通过setup_model方法,可以初始化YOLO模型并设置为评估模式。show方法用于在窗口中显示图像,而save_preds方法则用于将预测结果保存为视频文件。

在推理过程中,程序使用了多线程锁以确保线程安全,避免在多线程环境下出现数据竞争的问题。程序还支持回调机制,可以在特定事件发生时执行用户定义的函数,增强了程序的灵活性和可扩展性。

总体来说,这个文件是一个功能强大的目标检测预测器,能够处理多种输入源和模型格式,适用于实时和离线的目标检测任务。

11.4 train.py

以下是经过简化和注释的核心代码部分:

import os
import torch
import yaml
from ultralytics import YOLO  # 导入YOLO模型

# 设置设备为GPU(如果可用),否则使用CPU
device = "0" if torch.cuda.is_available() else "cpu"

if __name__ == '__main__':  # 确保该模块被直接运行时才执行以下代码
    workers = 1  # 设置数据加载的工作进程数量
    batch = 2    # 设置每个批次的大小

    data_name = "data"  # 数据集名称
    # 获取数据集配置文件的绝对路径
    data_path = abs_path(f'datasets/{data_name}/{data_name}.yaml', path_type='current')  
    unix_style_path = data_path.replace(os.sep, '/')  # 将路径转换为Unix风格

    # 获取数据集目录路径
    directory_path = os.path.dirname(unix_style_path)
    
    # 读取YAML配置文件
    with open(data_path, 'r') as file:
        data = yaml.load(file, Loader=yaml.FullLoader)
    
    # 如果YAML文件中包含'path'项,则修改为当前目录路径
    if 'path' in data:
        data['path'] = directory_path
        # 将修改后的数据写回YAML文件
        with open(data_path, 'w') as file:
            yaml.safe_dump(data, file, sort_keys=False)

    # 加载YOLOv8模型配置
    model = YOLO(model='./ultralytics/cfg/models/v8/yolov8s.yaml', task='detect')  
    
    # 开始训练模型
    results2 = model.train(
        data=data_path,  # 指定训练数据的配置文件路径
        device=device,  # 使用指定的设备进行训练
        workers=workers,  # 使用的工作进程数量
        imgsz=640,  # 输入图像的大小
        epochs=100,  # 训练的轮数
        batch=batch,  # 每个批次的大小
        name='train_v8_' + data_name  # 训练任务的名称
    )

代码注释说明:

  1. 导入库:导入必要的库,包括os(用于文件路径操作)、torch(用于深度学习)、yaml(用于处理YAML文件)和YOLO(用于目标检测模型)。
  2. 设备选择:根据是否有可用的GPU来选择计算设备。
  3. 主程序入口:确保代码在直接运行时执行。
  4. 数据集配置:设置数据集名称并获取相应的YAML配置文件路径。
  5. 路径处理:将路径转换为Unix风格以确保兼容性。
  6. 读取和修改YAML文件:读取数据集配置文件,修改其中的path项为当前目录路径,并将修改后的内容写回文件。
  7. 模型加载:加载YOLOv8模型的配置文件。
  8. 模型训练:调用模型的训练方法,指定训练所需的参数,包括数据路径、设备、工作进程数量、图像大小、训练轮数和批次大小。

这个程序文件 train.py 是一个用于训练 YOLOv8 模型的脚本。首先,它导入了必要的库,包括 ostorchyamlultralytics 中的 YOLO 模型。接着,它检查是否有可用的 GPU,如果有则将设备设置为 “0”(即使用第一个 GPU),否则使用 CPU。

if __name__ == '__main__': 这一块代码中,首先定义了一些训练参数,包括工作进程数 workers 和批次大小 batch。接下来,指定了数据集的名称 data_name,并构建了数据集 YAML 文件的绝对路径。使用 abs_path 函数获取路径后,将路径中的分隔符替换为 Unix 风格的分隔符。

然后,程序获取了数据集目录的路径,并打开指定的 YAML 文件以读取数据。通过 yaml.load 函数读取 YAML 文件内容,并在保持原有顺序的情况下进行处理。如果 YAML 文件中包含 path 项,则将其修改为数据集目录的路径,并将更新后的数据写回 YAML 文件中。

接下来,程序加载了预训练的 YOLOv8 模型,指定了模型的配置文件。之后,调用 model.train 方法开始训练模型。在训练过程中,指定了训练数据的配置文件路径、设备、工作进程数、输入图像的大小(640x640)、训练的 epoch 数(100)以及训练任务的名称。

总的来说,这个脚本的主要功能是配置和启动 YOLOv8 模型的训练过程,确保数据集路径正确,并设置相关的训练参数。

11.5 ultralytics\models_init_.py

以下是代码中最核心的部分,并附上详细的中文注释:

# 导入所需的模块
from .rtdetr import RTDETR  # 从当前包中导入 RTDETR 类
from .sam import SAM        # 从当前包中导入 SAM 类
from .yolo import YOLO      # 从当前包中导入 YOLO 类

# 定义可导出的模块,允许在其他模块中简单导入
__all__ = "YOLO", "RTDETR", "SAM"  # 指定可以被外部导入的类名

注释说明:

  1. 导入模块

    • from .rtdetr import RTDETR:从当前包(即包含此代码的目录)中导入 RTDETR 类。
    • from .sam import SAM:从当前包中导入 SAM 类。
    • from .yolo import YOLO:从当前包中导入 YOLO 类。
  2. 可导出模块

    • __all__ 是一个特殊变量,用于定义当使用 from module import * 时,哪些名称是可以被导出的。在这里,指定了 YOLORTDETRSAM 这三个类可以被外部模块导入。这样做可以控制模块的接口,避免不必要的名称被导出。

这个程序文件是Ultralytics YOLO项目中的一个初始化文件,通常用于模块的组织和导入。文件的开头有一个注释,指出这是Ultralytics YOLO的代码,并提到该项目遵循AGPL-3.0许可证。

接下来,文件通过相对导入的方式引入了三个类或模块:RTDETR、SAM和YOLO。这些类或模块可能是实现不同功能的核心组件,例如YOLO是一个流行的目标检测算法,而RTDETR和SAM可能是与之相关的其他模型或算法。

最后,__all__变量被定义为一个元组,包含了三个字符串,分别是"YOLO"、“RTDETR"和"SAM”。这个变量的作用是控制从该模块中使用from module import *语句时,哪些名称会被导入。通过定义__all__,可以使得模块的使用更加简洁,避免不必要的名称暴露。

总的来说,这个文件的主要功能是组织和简化模块的导入,使得用户在使用Ultralytics YOLO时能够方便地访问这些核心组件。

11.6 ultralytics\models\sam\modules\tiny_encoder.py

以下是经过简化并添加详细中文注释的核心代码部分:

import torch
import torch.nn as nn
import torch.nn.functional as F

class Conv2d_BN(torch.nn.Sequential):
    """执行2D卷积并随后进行批量归一化的顺序容器。"""

    def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0):
        """初始化卷积层和批量归一化层。"""
        super().__init__()
        # 添加卷积层
        self.add_module("conv", torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False))
        # 添加批量归一化层
        self.add_module("bn", torch.nn.BatchNorm2d(out_channels))

class PatchEmbed(nn.Module):
    """将图像嵌入为补丁并投影到指定的嵌入维度。"""

    def __init__(self, in_chans, embed_dim, resolution, activation):
        """初始化补丁嵌入层。"""
        super().__init__()
        self.patches_resolution = (resolution // 4, resolution // 4)  # 计算补丁的分辨率
        self.seq = nn.Sequential(
            Conv2d_BN(in_chans, embed_dim // 2, kernel_size=3, stride=2, padding=1),
            activation(),
            Conv2d_BN(embed_dim // 2, embed_dim, kernel_size=3, stride=2, padding=1),
        )

    def forward(self, x):
        """将输入张量通过补丁嵌入层的序列操作。"""
        return self.seq(x)

class MBConv(nn.Module):
    """移动反向瓶颈卷积层,属于EfficientNet架构的一部分。"""

    def __init__(self, in_chans, out_chans, expand_ratio, activation):
        """初始化MBConv层。"""
        super().__init__()
        self.conv1 = Conv2d_BN(in_chans, in_chans * expand_ratio, kernel_size=1)
        self.act1 = activation()
        self.conv2 = Conv2d_BN(in_chans * expand_ratio, in_chans * expand_ratio, kernel_size=3, padding=1, groups=in_chans * expand_ratio)
        self.act2 = activation()
        self.conv3 = Conv2d_BN(in_chans * expand_ratio, out_chans, kernel_size=1, bn_weight_init=0.0)
        self.act3 = activation()

    def forward(self, x):
        """实现MBConv层的前向传播。"""
        shortcut = x  # 残差连接
        x = self.conv1(x)
        x = self.act1(x)
        x = self.conv2(x)
        x = self.act2(x)
        x = self.conv3(x)
        x += shortcut  # 添加残差
        return self.act3(x)

class TinyViT(nn.Module):
    """TinyViT架构,用于视觉任务。"""

    def __init__(self, img_size=224, in_chans=3, num_classes=1000, embed_dims=[96, 192, 384, 768], depths=[2, 2, 6, 2]):
        """初始化TinyViT模型。"""
        super().__init__()
        self.patch_embed = PatchEmbed(in_chans=in_chans, embed_dim=embed_dims[0], resolution=img_size, activation=nn.GELU)
        self.layers = nn.ModuleList()

        # 构建层
        for i_layer in range(len(depths)):
            layer = nn.ModuleList([MBConv(embed_dims[i_layer], embed_dims[i_layer], expand_ratio=4.0, activation=nn.GELU) for _ in range(depths[i_layer])])
            self.layers.append(layer)

        # 分类头
        self.head = nn.Linear(embed_dims[-1], num_classes)

    def forward(self, x):
        """执行输入张量的前向传播。"""
        x = self.patch_embed(x)  # 通过补丁嵌入层
        for layer in self.layers:
            for block in layer:
                x = block(x)  # 通过每个MBConv块
        return self.head(x)  # 通过分类头

代码注释说明

  1. Conv2d_BN: 这个类组合了卷积层和批量归一化层,通常用于图像处理中的特征提取。
  2. PatchEmbed: 该类将输入图像分割成补丁,并将这些补丁投影到一个更高的维度,通常用于Transformer架构中的输入准备。
  3. MBConv: 这是一个移动反向瓶颈卷积层,设计用于高效的特征提取,特别是在深度学习模型中。
  4. TinyViT: 这是一个完整的TinyViT模型类,包含补丁嵌入层和多个MBConv层,最后通过一个线性层进行分类。

以上代码是TinyViT模型的核心部分,主要实现了图像的嵌入、特征提取和分类功能。

这个程序文件实现了一个名为TinyViT的视觉模型架构,主要用于图像处理任务。TinyViT是基于视觉变换器(Vision Transformer)设计的,结合了卷积神经网络(CNN)的优点,特别是在图像特征提取方面。代码中包含多个类,每个类负责模型的不同部分,以下是对主要部分的详细说明。

首先,文件导入了一些必要的库,包括PyTorch的核心模块和一些功能模块。接着,定义了多个类来构建TinyViT模型的各个组件。

Conv2d_BN类是一个简单的卷积层,后接批量归一化(Batch Normalization),用于提高训练的稳定性和加速收敛。它的构造函数接受多个参数,如输入和输出通道数、卷积核大小、步幅等。

PatchEmbed类负责将输入图像分割成小块(patches),并将这些小块投影到指定的嵌入维度。它通过两个卷积层来实现这一过程,输入图像的分辨率会被缩小到原来的1/4。

MBConv类实现了移动反向瓶颈卷积(Mobile Inverted Bottleneck Convolution),这是EfficientNet架构中的一部分。该类使用多个卷积层和激活函数来提取特征,并在训练时应用随机深度(Drop Path)以提高模型的泛化能力。

PatchMerging类用于合并相邻的特征块,并将其投影到新的维度。它通过一系列卷积操作来实现这一点,帮助模型在特征图中聚合信息。

ConvLayer类是一个卷积层,包含多个MBConv层,并支持下采样操作。它可以选择性地使用梯度检查点(Gradient Checkpointing)来节省内存。

Mlp类实现了多层感知机(MLP),用于处理输入特征。它包含层归一化和两个全连接层,激活函数为GELU。

Attention类实现了多头自注意力机制,支持空间感知。它根据输入的空间分辨率应用注意力偏置,并使用层归一化来处理输入。

TinyViTBlock类是TinyViT的基本构建块,结合了自注意力机制和局部卷积。它通过注意力机制处理输入特征,并使用局部卷积来进一步提取信息。

BasicLayer类表示TinyViT中的一个基本层,包含多个TinyViT块,并可选择性地进行下采样。

LayerNorm2d类实现了2D层归一化,适用于图像数据的归一化处理。

最后,TinyViT类是整个模型的核心,负责初始化和构建模型的各个层。它接收输入图像的大小、通道数、类别数等参数,并构建相应的嵌入层、多个基本层和分类头。模型的前向传播通过forward方法实现,输入图像经过各层处理后输出最终的分类结果。

总体而言,这个文件实现了一个高效的视觉模型TinyViT,结合了卷积和变换器的优点,适用于各种视觉任务。

12.系统整体结构(节选)

整体功能和构架概括

该项目是一个基于Ultralytics YOLO模型的目标检测和图像处理框架。其主要功能包括模型训练、推理、图像处理和可视化等。项目的结构模块化,便于扩展和维护。主要模块包括:

  • 模型模块:实现不同的模型架构(如YOLO、TinyViT等),用于目标检测和图像分割。
  • 训练模块:提供训练模型的功能,支持多种数据集和训练参数配置。
  • 预测模块:实现模型推理,支持实时视频流和静态图像的处理。
  • 用户界面模块:提供图形用户界面(GUI),方便用户进行数据探索和可视化。
  • 工具模块:实现一些辅助功能,如数据处理、文件管理等。

文件功能整理表

文件路径功能描述
ui.py提供一个接口来运行指定的脚本(如web.py),用于图形用户界面的启动和管理。
ultralytics/models/sam/amg.py实现图像处理和深度学习相关的功能,包括边界框处理、掩膜处理和图像裁剪等。
ultralytics/engine/predictor.py负责目标检测的推理,支持多种输入源和模型格式,提供实时和离线的推理功能。
train.py配置和启动YOLOv8模型的训练过程,处理数据集路径和训练参数设置。
ultralytics/models/__init__.py模块初始化文件,组织和简化模型组件的导入,提供YOLO、RTDETR和SAM的访问。
ultralytics/models/sam/modules/tiny_encoder.py实现TinyViT模型架构,结合卷积和变换器的优点,用于图像特征提取和处理。
ultralytics/data/explorer/gui/dash.py提供数据探索和可视化的图形用户界面,帮助用户分析和理解数据集。
chinese_name_list.py可能包含中文名称列表或相关功能,具体功能需要根据文件内容进一步分析。
ultralytics/trackers/track.py实现目标跟踪功能,支持在视频流中进行目标的持续跟踪。
ultralytics/trackers/__init__.py模块初始化文件,组织和简化目标跟踪相关组件的导入,提供跟踪功能的访问。

以上表格总结了每个文件的主要功能,便于理解整个项目的结构和功能模块。

注意:由于此博客编辑较早,上面“11.项目核心源码讲解(再也不用担心看不懂代码逻辑)”中部分代码可能会优化升级,仅供参考学习,完整“训练源码”、“Web前端界面”和“70+种创新点源码”以“13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。

13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)

19.png

参考原始博客1: https://gitee.com/qunmasj/Rice-pest-detection-and-testing

参考原始博客2: https://github.com/qunshansj/Rice-pest-detection-and-testing

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值