机器学习线性模型


线性回归

在这里插入图片描述

  • 做分类,找一条线,将不同类分开。做回归,就是找一条线,将它们串起来。
  • 线性模型形式化地写出来:f(x)=w1*x1+w2*x2+……+wd*xd+b。每一个x,代表一个属性;每一个w,代表一个权重。

在这里插入图片描述

  • 线性回归,我们要做的就是,找到一个方程f(x),使f(x)==y(理想情况)。由于有过拟合的存在,完全相等未必是好的,所以我们找f(x)≈y。
    w1*0.9+w2*0.8 w1*青绿色+w2*浊音
  • 线性回归模型,非常擅长处理数值属性。所以我们要将离散的属性,转成数值属性。
  • 在转换中需要考虑离散的属性中是否有序。例如:身高属性:高 中 低 (有序);转成连续数值:1.0 0.5 0。例如:颜色属性:青绿 浅白 黑色(无序);转成向量编码:[0 ,1 ,0]
  • 如何找到一个线性回归,那么要使f(x)与y之间的均方误差最小化,求得w和b的最优解,用w* 和 b* 表示。
  • 求最优解有一个经典的做法:最小二乘估计。

最小二乘解

在这里插入图片描述

  • 偏导,表示变化率;偏导为0,不再变化,达到最大或最小。
  • 线性回归的表达(f(x)-y)^2,没有最大值,可以无限偏离。只有可能是最小值,即f(x)==y,此时求得w和b的最优解。

多元线性回归

  • 刚才的x并没有加粗,是一个标量。
    在这里插入图片描述
  • 现在的x加粗了,表示是一个向量。x有d个,w也有d个。
    在这里插入图片描述

在这里插入图片描述

  • y=w1*x1+w2*x2+……+b*1 X=[x1,x2,……,xd,1] w^=[w1,w2,……,wd,b]
  • 将w和b吸收入向量形式w^,则f(x)=Xw ^。多元时,要写成二次型的形式。
    在这里插入图片描述

在这里插入图片描述

广义线性模型

线性模型的变化

在这里插入图片描述

广义线性模型

在这里插入图片描述

  • 如何用回归的模型来解决分类问题呢,接下来将叙述。

对率回归

二分类任务

在这里插入图片描述

  • 线性回归是实值输出,而分类期望的输出时0或1。那么我们需要有一个函数将实值输出z与0/1输出联系起来。
  • 单调可微、任意阶可导,于是找到了对数几率函数。

对率回归

在这里插入图片描述

  • 几率:y/(1-y) ,反映了x作为正例的相对可能性。
  • 以对数几率函数作为联系函数的线性回归模型,称为对数几率回归。它是分类学习算法。
  • 对率回归的优点:
    • 不需要事先假设数据分布(可以对任意数据使用)
    • 可得到“类别”的近似概率预测
    • 可以用现有的数据优化方法求最优解。

对率回归求解

  • 只有凸函数:梯度为0 的点,才是极值点。所以如下图所示的式子不是凸函数,不适用最小二乘法求解最优解。
    在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

  • 极大似然法的假设:MAX(P(真是+)*P(预测为+)+P(真是-)*P(预测为-)) 通常加一个ln 因为概率连乘通常造成浮点数的下移。
  • 其中P(真是+)可用y表示,P(真是-)可用1-y表示;P(预测为+)用上图所示的P1(xi;β),P(预测为-)用上图所示的P0(xi;β)
    在这里插入图片描述

线性判别分析(LDA)

在这里插入图片描述

  • 先用线性模型做回归,找一个联系函数将线性结果与分类结果联系起来。例如:对率回归。
  • 在线性模型上,把原来复杂的问题分开。可以引入很多种假设,其中一种线性判别分析。

在这里插入图片描述

  • 有一条线模型,有两堆点(+,-)。如何通过这条线把它们分开呢?
  • 假设我们能找到每个点在这条线上的投影。希望同类的样本点之间尽可能近,异类的样本点之间尽可能远。
  • 未来的新样本若落入+号区域就是正类,落入-号区就是反类。
  • 尽可能近,同类中的样本离均值向量近;尽可能远,两类的均值向量间的距离远。

在这里插入图片描述

  • 以上是给定的一些符号。

在这里插入图片描述

  • 在LDA中定义,类内散度矩阵:同类对象内部的分散程度。第0/1类,每个样本离中心有多远。
  • 类间散度矩阵:两类样本的中心距离。
  • LDA的目标是最大化J(广义瑞利商)。在J中w的大小不重要,分子分母可以约去;重要的是w的方向。在做分类的过程中,本就是将点投影到线的延长线上,所以线的方向很重要。

在这里插入图片描述

  • 在J中,令分母为1;J=分子。最大化该式子的等价形式为最小化负的该式子。

在这里插入图片描述

类别不平衡

在这里插入图片描述

  • y/(1-y)>1 ,y>1/2,预测为正例,隐含了1/2作为标准。此时正反例是一样多的。
  • 正反例不平衡时,则需要使y/(1-y)>m+/m-,预测为正例
  • y'/(1-y')=y/(1-y)*(m-/m+),是想找到一个新函数,新函数以1/2为切分点,能够代表原函数的切分点(m+/(m- + m+))
  • 然而,很难很精确地估计m-/m+。只有我们拿到的训练集,是整个潜在可能的数据的无偏采样,才能保证样本中的比例等于实际比例。
  • 常见类别不平衡学习方法:
    • 过采用:增加小类的数量,可以通过在两个样本间插值。
    • 欠采样:将大类样本减少,使其与小类样本一样多。
    • 阈值移动:调整阈值为正类数/总数。

以上就是本文的全部内容,感谢各位的阅读与支持!

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值