目录
一、建立回归模型
- 【导入数据】【分析】【回归】【线性】,在【保存】中勾选残差【未标准化】,系统会在原数据框内新保存为RES_1
二、判断有无自相关性
(1)图示检验法1——
- 【图形】【旧对话框】【散点图】【简单散点图】,将“年份”选入“X轴”,“RES_1”选入“Y轴”
(结果如下图所示)
根据上图可以看出,随着的变化,逐次变化并不太频繁地改变符号,而是几个负的后面跟了几个正的,则表明随机扰动项存在正的序列相关。
或者也可绘制or的散点图
(2)图示检验法2——
——首先,得到滞后一期的未标准化残差:
- 【转换】【创建时间序列】,选中“RES_1”,函数选择【滞后】or【延迟】,将滞后一期的未标准化残差命名为“RES_1_1”,最后点击【变化量】,确保结果显示为:RES_1_1=LAG(RES_1 1)
(操作过程中具体见下图)
——然后,绘制与的散点图:
- 【图形】【旧对话框】【散点图】【简单散点图】,将“RES_1_1”选入“X轴”,“RES_1”选入“Y轴”(或者将“RES_1”选入“X轴”,“RES_1_1”选入“Y轴”,绘制的散点图)
(结果如下图所示)
由上图可知,散点图结果大部分落在了第Ⅰ,Ⅲ象限,表明随机扰动项存在正的序列相关。
(3)DW检验法
相关知识:
DW的取值范围在0<DW<4。根据样本量n和解释变量的数目 k(含常数项)查询DW分布表,可得临界值和,然后依照如下表所示标准,参考计算得DW值,从而判断出模型的自相关性。
0≤DW≤ | 误差项ε间存在正自相关 |
<DW≤ | 不能判定是否有自相关 |
<DW<4- | 误差项间无自相关 |
4-≤DW<4- | 不能判定是否有自相关 |
4-≤DW≤4 | 误差项间存在负自相关 |
或者结合图示记忆:
- 【分析】【回归】【线性】,在【统计】中勾选残差【德宾-沃森】
(结果如下图所示)
本题中,n=23(n=模型自由度总计+1),k=2,通过查询DW分布表可知,,。
对本题来说,DW值=0.283,在的范围内,即可知本题的随机扰动项存在正的序列相关。
三、迭代法处理自相关
相关知识:
对于原一元线性回归方程,我们假设了其误差项存在一阶自回归,即有存在,其中满足GM假设(零均值、等方差、不相关)。
联立方程:
可得
……(1)
上式中,恰有:
故可令:
;;;
故(1)式可变为:
……(2)
易知,模型式(2)已消除了自相关。
——首先,得到滞后一期的和:
- 【转换】【创建时间序列】,选中“x”,函数选择【滞后】or【延迟】,将滞后一期的x命名为“x_1”,最后点击【变化量】,确保结果显示为:x_1=LAG(x 1);选中“y”,同上,保存为“y_1”
——其次,找到和:
- 【转换】【计算变量】,在目标变量框内输入“xp”,用来表示x',在数学表达式框内输入公式“x-(1-0.5*0.283)*x_1”;同理,输入公式“y-(1-0.5*0.283)*y_1”得到“yp”,用来表示y'。
(补充:已知DW值=0.283)
补充:
上述过程利用了公式:
联立上式可知:
——然后,建立和的回归模型并观察自相关消除与否:
- 【分析】【回归】【线性】,将“xp”选入“自变量”,“yp”选入“因变量”
(结果如下图所示)
由上表可知,通过迭代法后所得回归模型为:……(3)
由于该模型使用了滞后一期的数据,则n=23-1=22,k=2,通过查询DW分布表可知,,。
对本题来说,DW值=1.821,在的范围内,即可知通过使用迭代法,已经基本消除了自相关。
(或者,后续还可以通过“图示检验法”等方法进行佐证,此处过程略。)
——再然后,进行效果分析:
原模型摘要:
迭代后模型摘要:
通过比较迭代前后两模型标准误差的变化,可以发现,迭代后的模型效果相对更好。
——最后,将迭代后的回归方程还原为原始变量的方程:(非必须)
已知,通过迭代法后所得回归模型为:
……(3)
其中,,,且:DW值=1.821
则有:……(4)
……(5)
将(4)(5)式代入(3)式中有:
则还原为原始变量的方程为:
其中,关于和,由第三点的第一步可知,我们已经将滞后一期的和通过创建时间序列,保存为了“x_1”和“y_1”。
四、差分法处理自相关
相关知识:
差分法就是用增量数据代替了原来的样本数据,将原来的回归模型转变成了差分形式的模型。在迭代法中,已知有(1)式:
……(1)
当时,则上式变为了:
……(6)
式变为了:
若令:
;
综上所述,则(3)式可变为:
……(7)
——首先,找到和:
- 【转换】【创建时间序列】,选中“x”,函数选择【差分】or【差异】,将差分后的x命名为“Delta_x”,最后点击【变化量】,确保结果显示为:Delta_x=DIFF(x 1);选中“y”,同上,保存为“Delta_y”
——其次,建立和的回归模型并观察自相关消除与否:
- 【分析】【回归】【线性】,将“Delta_x”选入“自变量”,“Delta_y”选入“因变量”,在【统计】中勾选残差【德宾-沃森】,在【保存】中勾选残差【未标准化】,系统会在原数据框内新保存为RES_2,在【选项】中不勾选【在方程中包括常量】
(结果如下图所示)
由上表可知,通过差分法后所得回归模型为:……(8)
通过使用差分法,原始数据量会减少一项,则n=23-1=22,k=2,通过查询DW分布表可知,,。
对本题来说,DW值=1.415,落入了的范围内,故有无自相关性无法判断。
因此,后续还应该通过 “图示检验法” 或者 “DW检验法”等 进行验证,如下所示:
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
(顺便浅浅复习一下吧)
(1) 图示检验法——
- 【图形】【旧对话框】【散点图】【简单散点图】,将“年份”选入“X轴”,“RES_2”选入“Y轴”
(结果如下图所示)
由上图可以看出,随着的变化,无明显变化趋势,则表明随机扰动项不存在序列相关,回归模型良好。
(2) 图示检验法——
首先,得到滞后一期的未标准化残差:
- 【转换】【创建时间序列】,选中“RES_2”,函数选择【滞后】or【延迟】,将滞后一期的未标准化残差命名为“RES_2_1”,最后点击【变化量】,确保结果显示为:RES_2_1=LAG(RES_2 1)
然后,绘制与的散点图:
- 【图形】【旧对话框】【散点图】【简单散点图】,将“RES_2_1”选入“X轴”,“RES_2”选入“Y轴”(或者将“RES_2”选入“X轴”,“RES_2_1”选入“Y轴”,绘制的散点图)
(结果如下图所示)
由上图可以看出,随着的变化,无明显变化趋势,表明随机扰动项不存在序列相关,回归模型良好。
(3) DW检验法
- 【分析】【回归】【线性】,在【统计】中勾选残差【德宾-沃森】
(结果如下图所示)
本题中,n=22(n=自由度21+1),k=2,通过查询DW分布表可知,,。
对本题来说,DW值=1.865,在的范围内,已经基本消除了自相关。
同时,也可以顺便给出此模型结构:
由上表可知,该模型为:
end……
— — — — — — — — — — — — — — — — — — — — — — — — — — — —
— — — — — — — — — — — — — — — — — — — — — — — — — — — —
——然后,进行建模效果分析:
原模型摘要:
差分后模型摘要:
通过比较差分前后两模型标准误差的变化,可以发现,差分后的模型效果相对更好。
——最后,将差分后的回归方程还原为原始变量的方程:(非必须)
已知,通过差分法后所得回归模型为:
……(8)
其中,
将上式代入(8)式中有:
则还原为原始变量的方程为:
其中,关于和,由第三点的第一步可知,我们已经将滞后一期的和通过创建时间序列,保存为了“x_1”和“y_1”。
五、不同处理方法的选择
- 一般情况下,当模型相关系数时,采用差分法处理自相关性;
- 也可以选择两种方法同时使用,通过比较精度(标准估计误差)的高低,来抉择最终使用哪种方法。
(内容若有不妥之处,请多多包涵与指教)