【SPSS操作】回归分析:自相关性问题

目录

一、建立回归模型

二、判断有无自相关性

(1)图示检验法1

(2)图示检验法2

(3)DW检验法

三、迭代法处理自相关

四、差分法处理自相关

五、不同处理方法的选择



一、建立回归模型

  • 【导入数据】【分析】【回归】【线性】,在【保存】中勾选残差【未标准化】,系统会在原数据框内新保存为RES_1

二、判断有无自相关性

(1)图示检验法1——(t,e_{t})

  • 【图形】【旧对话框】【散点图】【简单散点图】,将“年份”选入“X轴”,“RES_1”选入“Y轴”

(结果如下图所示)

根据上图可以看出,e_{t}随着t的变化,逐次变化并不太频繁地改变符号,而是几个负的e_{t}后面跟了几个正的,则表明随机扰动项\varepsilon _{t}存在正的序列相关

或者也可绘制(x,e_{t})or(y,e_{t})的散点图

(2)图示检验法2——(e_{t-1},e_{t})

——首先,得到滞后一期的未标准化残差e_{t-1}

  • 【转换】【创建时间序列】,选中“RES_1”,函数选择【滞后】or【延迟】,将滞后一期的未标准化残差命名为“RES_1_1”,最后点击【变化量】,确保结果显示为:RES_1_1=LAG(RES_1 1)

(操作过程中具体见下图)

——然后,绘制e_{t-1}e_{t}的散点图:

  • 【图形】【旧对话框】【散点图】【简单散点图】,将“RES_1_1”选入“X轴”,“RES_1”选入“Y轴”(或者将“RES_1”选入“X轴”,“RES_1_1”选入“Y轴”,绘制(e_{t},e_{t-1})的散点图)

(结果如下图所示)

由上图可知,散点图结果大部分落在了第Ⅰ,Ⅲ象限,表明随机扰动项\varepsilon _{t}存在正的序列相关

(3)DW检验法


相关知识:

DW的取值范围在0<DW<4。根据样本量n和解释变量的数目 k(含常数项)查询DW分布表,可得临界值d_{L}d_{U},然后依照如下表所示标准,参考计算得DW值,从而判断出模型的自相关性。

0≤DW≤d_{L}误差项ε间存在正自相关
d_{L}<DW≤d_{U}不能判定是否有自相关
d_{U}<DW<4-d_{U}误差项间无自相关
4-d_{U}≤DW<4-d_{L}不能判定是否有自相关
4-d_{L}≤DW≤4误差项间存在负自相关

或者结合图示记忆:


  • 【分析】【回归】【线性】,在【统计】中勾选残差【德宾-沃森】

(结果如下图所示)

本题中,n=23(n=模型自由度总计+1),k=2,通过查询DW分布表可知,d_{L}=1.26d_{U}=1.44

对本题来说,DW值=0.283,在0\sim d_{L}的范围内,即可知本题的随机扰动项\varepsilon _{t}存在正的序列相关

三、迭代法处理自相关

相关知识:

对于原一元线性回归方程{y_{t}}=\beta _{0}+\beta _{1}{x_{t}}+\varepsilon _{t},我们假设了其误差项存在一阶自回归,即有\varepsilon _{t}=\rho \varepsilon _{t-1}+u_{t}存在,其中u_{t}满足GM假设(零均值、等方差、不相关)。

联立方程:

\left\{\begin{matrix} {y_{t}}=\beta _{0}+\beta _{1}{x_{t}}+\varepsilon _{t}\\ {y_{t-1}}=\beta _{0}+\beta _{1}{x_{t-1}}+\varepsilon _{t-1} \end{matrix}\right.

可得

(y_{t}-\rho y_{t-1})=(\beta _{0}-\rho \beta _{0})+\beta _{1}(x_{t}-\rho x_{t-1})+(\varepsilon _{t}-\rho \varepsilon _{t-1})……(1)

上式中,恰有:u_{t}=\varepsilon _{t}-\rho \varepsilon _{t-1}

故可令:

{y_{t}}'=y_{t}-\rho y_{t-1}{x_{t}}'=x_{t}-\rho x_{t-1}{\beta _{0}}'=\beta _{0}(1-\beta ){\beta _{1}}'=\beta _{1}

故(1)式可变为:

{y_{t}}'={\beta _{0}}'+{\beta _{1}}'{x _{t}}'+u_{t}……(2)

易知,模型式(2)已消除了自相关。

——首先,得到滞后一期的x_{t-1}y_{t-1}

  • 【转换】【创建时间序列】,选中“x”,函数选择【滞后】or【延迟】,将滞后一期的x命名为“x_1”,最后点击【变化量】,确保结果显示为:x_1=LAG(x 1);选中“y”,同上,保存为“y_1”

——其次,找到{x_{t}}'{y_{t}}'

  • 【转换】【计算变量】,在目标变量框内输入“xp”,用来表示x',在数学表达式框内输入公式“x-(1-0.5*0.283)*x_1”;同理,输入公式“y-(1-0.5*0.283)*y_1”得到“yp”,用来表示y'。

(补充:已知DW值=0.283)

补充:

上述过程利用了公式:

\left\{\begin{matrix}{x_{t}}'=x_{t}-\rho x_{t-1}\\{y_{t}}'=y_{t}-\rho y_{t-1}\\\hat{\rho}\approx 1-\frac{1}{2}DW\end{matrix}\right.

联立上式可知:

{x_{t}}'=x_{t}-(1-\frac{1}{2}DW)x_{t-1}

{y_{t}}'=y_{t}-(1-\frac{1}{2}DW)y_{t-1}

——然后,建立{x_{t}}'{y_{t}}'的回归模型{y_{t}}'={\beta _{0}}'+{\beta _{1}}'{x _{t}}'+u_{t}并观察自相关消除与否:

  • 【分析】【回归】【线性】,将“xp”选入“自变量”,“yp”选入“因变量”

(结果如下图所示)

由上表可知,通过迭代法后所得回归模型为:{y_{t}}'=185.307+0.628{x_{t}}'……(3)

由于该模型使用了滞后一期的数据,则n=23-1=22,k=2,通过查询DW分布表可知,d_{L}=1.24d_{U}=1.43

对本题来说,DW值=1.821,在d_{U}\sim(4-d_{U})的范围内,即可知通过使用迭代法,已经基本消除了自相关

(或者,后续还可以通过“图示检验法”等方法进行佐证,此处过程略。)

——再然后,进行效果分析:

原模型摘要:

迭代后模型摘要:

通过比较迭代前后两模型标准误差的变化,可以发现,迭代后的模型效果相对更好。

——最后,将迭代后的回归方程还原为原始变量的方程:(非必须)

已知,通过迭代法后所得回归模型为:

{y_{t}}'=185.307+0.628{x_{t}}'……(3)

其中,{y_{t}}'=y_{t}-(1-\frac{1}{2}DW)y_{t-1}{x_{t}}'=x_{t}-(1-\frac{1}{2}DW)x_{t-1},且:DW值=1.821

则有:{y_{t}}'=y_{t}-0.8585y_{t-1}……(4)

           {x_{t}}'=x_{t}-0.8585x_{t-1}……(5)

将(4)(5)式代入(3)式中有:

y_{t}-0.8585y_{t-1}=185.307+0.628(x_{t}-0.8585x_{t-1})

则还原为原始变量的方程为:

y_{t}=(185.307+0.8585y_{t-1}-0.539138x_{t-1})+0.628x_{t}


其中,关于y_{t-1}x_{t-1},由第三点的第一步可知,我们已经将滞后一期的x_{t-1}y_{t-1}通过创建时间序列,保存为了“x_1”和“y_1”。

四、差分法处理自相关

相关知识:

差分法就是用增量数据代替了原来的样本数据,将原来的回归模型转变成了差分形式的模型。在迭代法中,已知有(1)式:

(y_{t}-\rho y_{t-1})=(\beta _{0}-\rho \beta _{0})+\beta _{1}(x_{t}-\rho x_{t-1})+(\varepsilon _{t}-\rho \varepsilon _{t-1})……(1)

\rho=1时,则上式变为了:

(y_{t}-y_{t-1})=\beta _{1}(x_{t}-x_{t-1})+(\varepsilon _{t}-\varepsilon _{t-1})……(6)

u_{t}=\varepsilon _{t}-\rho \varepsilon _{t-1}变为了:u_{t}=\varepsilon _{t}-\varepsilon _{t-1}

若令:

\Delta y_{t}=y_{t}-y_{t-1}\Delta x_{t}=x_{t}-x_{t-1}

综上所述,则(3)式可变为:

\Delta y_{t}=\beta _{1}\Delta x_{t}+u_{t}……(7)

——首先,找到\Delta x\Delta y:

  • 【转换】【创建时间序列】,选中“x”,函数选择【差分】or【差异】,将差分后的x命名为“Delta_x”,最后点击【变化量】,确保结果显示为:Delta_x=DIFF(x 1);选中“y”,同上,保存为“Delta_y”

——其次,建立\Delta x_{t}\Delta y_{t}的回归模型\Delta y_{t}={\beta _{1}}\Delta x _{t}+u_{t}并观察自相关消除与否:

  • 【分析】【回归】【线性】,将“Delta_x”选入“自变量”,“Delta_y”选入“因变量”,在【统计】中勾选残差【德宾-沃森】,在【保存】中勾选残差【未标准化】,系统会在原数据框内新保存为RES_2,在【选项】中不勾选【在方程中包括常量】

(结果如下图所示)

由上表可知,通过差分法后所得回归模型为:\Delta y_{t}=0.637\Delta x_{t}……(8)

通过使用差分法,原始数据量会减少一项,则n=23-1=22,k=2,通过查询DW分布表可知,d_{L}=1.24d_{U}=1.43

对本题来说,DW值=1.415,落入了d_{L}\sim d_{U}的范围内,故有无自相关性无法判断

因此,后续还应该通过 “图示检验法” 或者 “DW检验法”等 进行验证,如下所示:

—  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  — —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —

(顺便浅浅复习一下吧)

          (1)  图示检验法——(t,e_{t})

  • 【图形】【旧对话框】【散点图】【简单散点图】,将“年份”选入“X轴”,“RES_2”选入“Y轴”

(结果如下图所示)

由上图可以看出,e_{t}随着t的变化,无明显变化趋势,则表明随机扰动项\varepsilon _{t}不存在序列相关,回归模型良好。

         (2)  图示检验法——(e_{t-1},e_{t})

        首先,得到滞后一期的未标准化残差e_{t-1}

  • 【转换】【创建时间序列】,选中“RES_2”,函数选择【滞后】or【延迟】,将滞后一期的未标准化残差命名为“RES_2_1”,最后点击【变化量】,确保结果显示为:RES_2_1=LAG(RES_2 1)

        然后,绘制e_{t-1}e_{t}的散点图:

  • 【图形】【旧对话框】【散点图】【简单散点图】,将“RES_2_1”选入“X轴”,“RES_2”选入“Y轴”(或者将“RES_2”选入“X轴”,“RES_2_1”选入“Y轴”,绘制(e_{t},e_{t-1})的散点图)

(结果如下图所示)

由上图可以看出,e_{t}随着e_{t-1}的变化,无明显变化趋势,表明随机扰动项\varepsilon _{t}不存在序列相关,回归模型良好。

         (3)  DW检验法

  •  【分析】【回归】【线性】,在【统计】中勾选残差【德宾-沃森】

(结果如下图所示)

本题中,n=22(n=自由度21+1),k=2,通过查询DW分布表可知,d_{L}=1.24d_{U}=1.43

对本题来说,DW值=1.865,在d_{U}\sim(4-d_{U})的范围内,已经基本消除了自相关

同时,也可以顺便给出此模型结构:

由上表可知,该模型为:\hat{e_{t}}=0.208e_{t-1}

end……

—  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —
—  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —

  ——然后,进行建模效果分析:

原模型摘要:

差分后模型摘要:

通过比较差分前后两模型标准误差的变化,可以发现,差分后的模型效果相对更好。

——最后,将差分后的回归方程还原为原始变量的方程:(非必须)

已知,通过差分法后所得回归模型为:

\Delta y_{t}=0.637\Delta x_{t}……(8)

其中,\Delta y_{t}=y_{t}-y_{t-1}

           \Delta x_{t}=x_{t}-x_{t-1}

将上式代入(8)式中有:

y_{t}-y_{t-1}=0.637(x_{t}-x_{t-1})

则还原为原始变量的方程为:                

y_{t}=y_{t-1}+0.637(x_{t}-x_{t-1})


其中,关于y_{t-1}x_{t-1},由第三点的第一步可知,我们已经将滞后一期的x_{t-1}y_{t-1}通过创建时间序列,保存为了“x_1”和“y_1”。

五、不同处理方法的选择

  1. 一般情况下,当模型相关系数> 0.8时,采用差分法处理自相关性;
  2. 也可以选择两种方法同时使用,通过比较精度(标准估计误差)的高低,来抉择最终使用哪种方法。

(内容若有不妥之处,请多多包涵与指教)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值