【排列距离 / B 康托展开和反康托展开】

康托展开详解_康托展开原理-CSDN博客

题目

TLE代码

#include <bits/stdc++.h>
using namespace std;
int main()
{
    int cntall = 1, m1, m2;
    string s = "abcdefghijklnopqr";
    while (next_permutation(s.begin(), s.end()))
    {
        if (s == "aejcldbhpiogfqnkr")
            m1 = cntall;
        else if (s == "ncfjboqiealhkrpgd")
            m2 = cntall;
        cntall++;
    }
    cout << min(abs(m2 - m1), cntall - abs(m2 - m1));
}

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
LL a1, a2;
LL f[20];
void get_f(int n)
{
    f[1] = 1;
    for (int i = 2; i <= n; i++)
    {
        f[i] = i * f[i - 1];
    }
}
void canto(string str, LL &x)
{
    int n = str.size();
    for (int i = 0; i < n; i++)
    {
        int temp = 0;
        for (int j = i + 1; j < n; j++)
        {
            if (str[i] > str[j])
                temp++;
        }
        x += temp * f[n - 1 - i];
    }
}
int main()
{
    get_f(17);
    string s1 = "aejcldbhpiogfqnkr";
    string s2 = "ncfjboqiealhkrpgd";
    canto(s1, a1), canto(s2, a2);
    cout << min(abs(a1 - a2), f[17] - abs(a1 - a2));
}

补充:反康托展开

string r_canto(string str, LL x)
{
    string retv = "";

    int n = str.size();
    bool st[n] = {false};
    for (int i = n - 1; i >= 1; i--)
    {
        int k = x / f[i];
        x = x % f[i];
        for (int j = 0; j < n; j++)
        {
            if (!st[j])
                k--;
            if (k < 0)
            {
                st[j] = true;
                retv += str[j];
                break;
            }
        }
    }

    for (int i = 0; i < n; i++)
    {
        if (!st[i])
        {
            retv += str[i];
            break;
        }
    }

    return retv;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值