求逆元 欧拉函数值

信息安全数学基础编程题作业,代码不够精简仅供参考

提示:以下是本篇文章正文内容,下面案例可供参考

一、求逆元

问题描述:写出判断a在模m下是否有逆元,如果有求出逆元的程序。

思路:若(a,m)=1,则a在模m下是有逆元b,b在大于等于1小于m这个区间内,使得a*b\equiv1(mod m),即(a*b-1)%m=0。

(用广义欧几里得除法求最大公因数)

代码展示:

#include<iostream>
using namespace std;

int main()
{
	int a=0,m=0;
	cin>>a>>m;
	int temp=a,mt=m,d=0,temp2;
	while(d!=1)//求a,m的最大公因数 
	{
		if(temp%mt==0) 
		{
			d=mt;
			break;
		}
		else
		{
			temp2=temp;
			temp=mt;
			mt=temp2%mt;
		}
	} 
	if(d==1)//存在逆元 
	{
		for(int i=1;i<m;i++)
		{
			if((a*i-1)%m==0)
			{
				cout<<i;
				break; 
			}
		} 
	}
	else cout<<"a不存在它的逆元"; 
}

结果:

二、求欧拉函数值

问题描述:写出求n的欧拉函数值的程序。 

思路:只要将n写成素数相乘的形式,即n= p_{1}^{\beta 1}\ast p_{2}^{\beta 2}\ast \cdots p_{n}^{\beta n}

\varphi \left ( n \right )= \varphi \left (p _{1} ^{\beta 1}\right )\ast \varphi \left (p _{2} ^{\beta 2}\right )\ast \cdots \varphi \left (p _{n} ^{\beta n}\right )= \left ( \left ( p_{1}-1\right )p_{1} ^{\beta 1-1}\right ) \left ( \left ( p_{2} -1\right ) p_{2} ^{\beta 2-1}\right )\cdots \left ( \left ( p_{n} -1\right )p_{n} ^{\beta n-1}\right )

代码展示:

#include<iostream>
#include<cmath>//sqrt(n)
using namespace std;

int main(){
	int n;
	cin>>n;//输入要大于等于2 
	int i=0,m=sqrt(n);//数组存储小于等于根号n的所有素数 
	int count=1; //欧拉函数值 
	int arr[m];
	arr[0]=2;//最小素数
	int panduan;
	for( int k=3; k<=m;k++){	//素数 
		panduan=1;
		for(int j=0;j<=i;j++){
			if(k%arr[j]==0)
			{
				panduan=0;
				break;
			}	}
		if(panduan==1){
			i++;
			arr[i]=k;
		}	}
	arr[++i]=n;//考虑n本身是素数 
	for(int j=0;j<=i&&n>=arr[j];j++)//注意j不要超过数组的实际大小 
	{
		if(n%arr[j]==0)
		{
			n=n/arr[j];
			count*=(arr[j]-1);
			while(n%arr[j]==0)
			{
				n=n/arr[j];
				count*=arr[j];
			}	}	}
	cout<<count;	
}

结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值