01引言
近些年来,全球范围内自然灾害频发。海地大地震、中国汶川大地震造成大量的人员伤亡和工程结构的破坏,日本9.0级地震引发的海啸对工程结构造成的破坏尤其是反应堆安全壳导致的核泄漏更是令人触目惊心。另一方面,随着工业产品逐渐向大型化、复杂化发展,其性能参数越来越高,工作环境条件愈加严酷,疲劳破坏及结构失效现象层出不穷。工程结构、工业产品的安全性和可靠性必将引起人们的高度重视。大型工程结构和复杂工业产品的可靠度受到很多不确定因素的影响(比如结构材料特性的变异性、结构尺寸变异性以及所承受荷载的随机性不确定性等因素),结构响应量与随机变量之间的函数关系十分复杂,结构功能函数为隐式,且具有高次非线性,结构可靠度求解十分困难。随着现代结构工程趋向超大型、超高型发展和结构的日益复杂,传统的结构可靠性分析方法已不再适用。工程结构的计算机仿真可以很好的考虑影响结构可靠性的各种参数的空间变异性,因而,结构随机场的ANSYS计算机仿真技术为求解大型复杂结构的可靠度问题提供了有效手段。
在传统的结构设计中,一般采用的是确定性分析,即把结构各个设计变量(直径、厚度、材料属性、长度、宽度等)以确定性的数值来进行定义,并在指定参数值的基础上进行各种分析。但是在实际生产过程中,存在设计参数变化的各种不确定因素,导致同一批次材料、零部件的相关参数不是确定的,使得设计参数在某种程度上存在不确定性和分散性,因此传统的结构设计存在一定缺陷。而运用可靠性分析,可以兼顾到这些不确定性对结构性能的影响。它可以解决以下问题:
1)可以确定某个输入变量的不确定性或者分散性对输出参数(有限元分析的应力、变形、频率等)分散程度的影响大小。
2)可以确定各个随机变量对于输出结果分散性、失效概率的影响程度。
3)可以确定输入参数对输出参数的敏感程度。如果输出参数确实由于受到输入变量分散性的影响,而导致分析结果的分散性,那么满足设计标准的概率大小即为可靠度的定量描述。
02工程可靠性分析的基本原理
2.1结构的失效概率与功能函数
在进行结构可靠度分析时,把诸如作用效应、材料性能、结构几何参数等随机因素作为基本变量X=(X1,X2......XX)来考虑,由基本变量组成的函数来描述结构的功能函数:
将表征结构荷载方面的基本变量组合成作用效应S,抗力方面的基本变量组合成结构抗力R,结构的功能函数则变为:
结构的失效概率可表示为:
结构可靠指标为:
2.2功能函数的求解
03工程可靠性分析的基本流程
利用有限元法进行结构可靠性分析,通常分为建立结构有限元分析模型、进行结构可靠性分析、可靠性分析结果后处理3个步骤:
①建立结构有限元分析模型,包括建立结构分析的有限元模型、加载、求解和提取可靠性分析所用的参数。
②结构可靠性分析阶段,主要包括选择和定义随机输入变量和输出变量、确定各输入变量服从的分布类型、选择分析方法,编制可靠性分析程序。
③后处理阶段通常包括抽样过程显示、绘制设计变量取值分布和失效概率分布函数、确定输入变量和输出变量的相关系数矩阵、灵敏度分析、生成可靠性分析报告等。
04基于ansys workbench 的可靠性分析
在 ANSYS经典界面中,可以利用pds模块实现对简单结构的可靠性分析。而ansys workbench 是一款功能强大的通用有限元分析软件,其集成的可靠性分析模块已经可以实现对复杂结构进行可靠性分析。另外workbench可以实现和其他软件的资源共享,它可以通过强大的数据接口,把其他三维软件中完成的实体模型导入到workbench中进行分析,而在进行可靠性分析时,必须保证模型的各项参数在workbench中能够被识别,所以模型必须是参数化模型。本章主要时借助于 workbench软件中Six-sigma Analysis模块来进行可靠性分析。
4.1什么是Six Sigma 分析
-典型的分析都建设每个输入参数都是固定值,如弹性模量,几何尺寸等,并且通过安全系数来考虑这些假设条件:
-对于Six Sigma设计,他提供的模型可以考虑输入和输出参数的发生概率性,及引入了发生概率,这个与实际工程更加接近。因此实际产品制造过程的尺寸具有一定的离散型。
-Six Sigma为高可靠性分析,即每百万件产品中,只允许出现3-4件不合格产品
Six Sigma分析可以帮助用户回答以下问题:
-输出参数有多大的比例范围,输出参数的稳健性如何;
-如果输出参数与输入参数之间存在比例关系,则可以通过计算得到设计标准可靠性是多大;
-用户不期望和不想发生的情况概率有多大;
-用户可以得到输入变量对输出参数的贡献和失效发生概率;
-此外还可以得到,输出参数关于输入参数的敏感度。
4.2Six Sigma 分析的基本步骤
(1)指定输入参数的分布规律
Beat分布对于有固定边界的随机变量来说非常适用。如果随机变量则都是基本均匀分布的线性系统运算,那么输出结果通常是服从Beat分布,例如公差和装配问题,单个零件的公差遵循均匀分布,应该是单个零件公差的加紧关系,此时总体公差应该是使用Beat描述。
指数分布(Exponential Distribution)。在统计学中,当实际物理因素造成随机输入参数增加而概率密度函数单调递减时,一般使用指数分布。指数分布经常用于描述随时间变化的效应,如描述在固定比率下不相关时间发生的间隔时间,非常广泛的用于系统可靠性与寿命相关的系统可靠性问题。此外,他也用于处理无冗余系统的寿命分布。对应机械零件来说,疲劳往往是限制寿命的主要因素,通过指数分布可以排除是否是疲劳引起的。
高斯正态分布(Gaussian (Normal)Distribution)。在统计学中,高斯正态分布是常用也是最基本的分布函数,用于描述多数物理现象中测量数据的离散型。严格来说,不管输入变量的分布如何,经过线性系统运行后,只要样本数目足够大,其输出变量肯定服从正态分布。
对数正态分布(Lognormal Distrbution)。在统计学中,对正态分布也是一最基本,最常用的分布函数,常用于描述很多物理现象中测量数据的离散性,他要求数据的对数服从正态分布。对数正态部分在处理大量数据误差叠加效果的物理现象上非常有效,也可以处理两个或多个服从对数正态分布的随机因素叠加问题,经常用于描述寿命分布,如几乎总是利用其描述材料承受交变载荷直至出现低周疲劳破坏时应变幅的离散情况。
均匀分布(Uniform Distribution)。在统计学中,当只知道最小值和最大值时均匀分布是最基本的分布函数,经常用于描述几何公差,也用于描述随机数据在各间距上分布基本一致的情况,当不了实际工程情况如何时,也往往使用均匀分布。
三角分布(Triangular Distribution)。在统计学中,当随机变量的实际数据并不知道时常采用三角分布。三角分布经常用于将专家的意见转换成数学模型,主要用于描述载荷参数的离散型。不考虑要建立模型的随机变量本身,设计人员总是可以研究有千分之一可能性的最大载荷时多少等问题。
截断高斯分布(Truncated Gaussian Distribution)。在统计学中,截断高斯分布主要用于描述物理现象服从高斯分布,极限值具有一定限制或通过质量控制手段将样本测得数值规定在一定范围内的测量数据。场用于描述材料的特性或几何公差等。
威尔布分布(Weibull Distribution)。在统计学中,该分布主要用于描述强度或与强度相关的寿命参数的离散型,而且他是脆性很强材料的强度和寿命参数的标准分布。
(2)观察输出参数的分布规律
完成可靠性计算后,可以观察输出参数的累计概率和方差水平
(3)观察失效概率
(4)观察总体敏感度图