1 疲劳计算概述
疲劳是一种机械损伤过程,在这一过程中即使名义应力低于材料的屈服强度,载荷的反复变化也将引起失效。
疲劳一般包含裂纹萌生和随后的裂纹扩展两个过程,循环塑性变形是金属产生破坏的主要原因。
裂纹的形成使得裂纹尖端的应力高度集中,处于循环塑性变形,进而导致裂纹的进一步扩展。
↓
裂纹萌生寿命
裂纹扩展寿命
总寿命
2 疲劳计算术语
交变载荷
交变载荷--随时间变化的载荷
载荷谱--交变载荷变化的历程,是一个统计值
交变载荷特征量:
T:周期
σmax:最大载荷
σmin:最小载荷
σm:平均载荷
σa:交变载荷幅值
△σ:交变载荷范围(变程)
载荷可变性系数
应力比(反映载荷的性质)
5个特征参数中只要任意的2个量,就可以描述交变载荷,即其他的任意3个量。
设计:用σmax,σmin ,直观;
试验:用σm,σa ,便于加载;
分析:用σa,R,突出主要控制参量, 便于分类讨论。
疲劳设计方法
无限寿命设计
“对于疲劳,应力幅比构件承受的最大应力更重要。应力幅越大,疲劳寿命越短;应力幅小雨某一极限值时,将不发生疲劳破坏”。
对于无裂缝构件,控制其应力水平,使其小于疲劳极限强度(Sf),则不萌生疲劳裂缝。所以其无限寿命设计条件为:
材料的疲劳极限强度Sf由S-N曲线给出。
其中20世纪60年代研究裂缝扩展的结果指出,裂缝扩展的控制变量—应力强度因子幅度也存在着一个门槛值。对于已有裂缝存在的构件,控制其应力强度因子,使其小于门槛值,则虽有裂缝但不扩展,也可以实现无限寿命设计。
安全寿命设计
无限寿命设计要求将构件中的使用应力控制在很低的水平,材料的潜能得不到充分发挥,对于并不需要经受很多循环次数的构件,无限寿命设计就很不经济。
使构件在有限长设计寿命内,不发生疲劳破坏的设计,称之为安全寿命设计(safe-life design)或有限寿命设计,飞机、车辆等大多数都采用安全寿命设计。
材料的S-N曲线和Miner累计损伤理论,是安全寿命设计的基础。
损伤容限设计
由于有裂纹的存在,安全寿命设计并不能完全确保安全。提出了裂纹尖端场控制变量—应力强度因子K的概念,并提出疲劳裂纹扩展速率可以由应力强度因子幅度来描述。
损伤容积极限是为保证含裂纹或可能含裂纹的构件的安全。设计思路:假定构件中存在着裂纹,用断裂力学分析、疲劳裂纹扩展分析和试验验证,保证在定期检查肯定能发生裂纹前,裂纹不会扩展到引起破坏。
断裂判据和裂纹扩展方程是损伤容限设计的基础。
3
S-N曲线
载荷与疲劳失效的关系,采用的是应力-寿命曲线或S-N曲线来表示:
载荷与疲劳失效的关系,采用的是应力-寿命曲线或S-N曲线来表示:
--若某一部件在承受循环载荷, 经过一定的循环次数后,该部件裂纹或破坏将会发展,而且有可能导致失效;
--如果同个部件作用在更高的载荷下,导致失效的载荷循环次数将减少;
--应力-寿命曲线或S-N曲线,展示出应力幅与失效循环次数的关系。
线性显示
双对数显示
S-N曲线中的水平直线部分对应的应力水平就是材料的疲劳极限,其原意为材料经受无数次应力循环都不发生破坏的应力极限,Workbench默认的“无数次”为1E6。
斜线部分给出了试样承受的应力幅水平与发生疲劳破断时所经历的应力循环次数之间的关系,多用如幂函数的形式表示。
式中σ为应力幅或最大应力,N为达到疲劳破断时的应力循环次数,m,C材料常数
如果给定一个应力循环次数,便可由上式求出或由斜线量出材料在该条件下所能承受的最大应力幅水平。反之,也可以由一定的工作应力幅求出对应的疲劳寿命。因为此时试样或材料所能承受的应力幅水平是与给定的应力循环次数相关联的,所以称之为条件疲劳极限,或称为疲劳强度。斜线部分是零部件疲劳强度的有限寿命设计或疲劳寿命计算的主要依据。
材料或构件到发生疲劳破坏时所经历的应力循环次数称为材料或构件的疲劳寿命,通常它包括疲劳裂纹的萌生寿命与扩展寿命之和。
4
裂纹扩展寿命计算方法
1区是低速率区。该区域内,随着应力强度因子幅度△K降低时,裂纹扩展速率迅速下降。到某一值△Kth时,裂纹扩展速率趋近于零
。
若△K<△Kth,可以认为裂纹发生扩展。△Kth是反应疲劳裂纹是否扩展的一个重要材料参数,称为疲劳裂纹扩展的门槛应力强度因子幅度;
2区是中速率裂纹扩展区。此时,裂纹扩展速率一般在
范围内。大量的实验研究表明:中速率区内,
有良好的对数线性关系。利用这一关系进行疲劳裂纹扩展寿命预测,是疲劳断裂研究的重点。
3区为高速率区,在这一区域内,
大,裂纹扩展快,寿命短。其对裂纹扩展寿命的贡献,通常可以不考虑。随着裂纹扩展速率的迅速增大,裂纹尺寸迅速增大,裂纹发生。裂纹发生由断裂条件
控制。因为
故图上渐进线为
Paris模型(1963年)
对于中速率区的稳定裂纹扩展,间的线性关系可表达为:
这就是著名的Paris公式(1963年)。上式指出:应力强度因子幅度△K是疲劳裂纹扩展的主要控制参数量:△K增大(即载荷水平△σ增大或裂纹尺寸a增大),则裂纹扩展率da/dN增大。裂纹扩展参数C、m是描述材料疲劳裂纹扩展性能的基本参数,由于实验确定。因为压应力对裂纹扩展基本无贡献,故与S-N曲线、ε-N曲线不同,da/dN-△K曲线足以R=0(脉冲循环)时的曲线作为基本曲线的。
表1 合金的Paris方程中的参数数值
从初始裂纹长度a0扩展到临界裂纹长度aC,所经历的载荷循环次数NC,称为疲劳裂纹扩展寿命。这里,以Paris裂纹扩展速率公式为基础,讨论疲劳裂纹扩展寿命的预测和抗疲劳断裂设计计算方法。要估算疲劳裂纹扩展寿命,必需首先确定在给定载荷作用下,构件发生断裂时的临界裂纹尺寸aC。依据线弹性断裂判据有:
式中,σmax是最大循环应力;Kc是材料的断裂韧性;f一般是构建几何与断裂尺寸的函数,可由应力强度因子手册查到。对于无限大中心裂纹板(板宽w>>a),f=1;对于单边裂纹无限大板(板宽w>>a),f=1.12
由帕里斯(P.C.Paris)半经验定律,得到
将△K、ac代入公式,积分得
计算整理得到疲劳裂纹扩展寿命计算公式如下: