多元函数微分相关内容一览

目录

二元函数图像

 几个例子:

偏导数

定义(极限)

 几何意义

几何应用

全微分

链式法则

复合函数单变量

 如果复合函数变量更多呢?

最优化问题(极最值)

1.极值必要条件

2.下面引出极值的充分条件

应用:最小二乘法

最值

方向导数和梯度 

梯度

方向导数


二元函数图像

 几个例子:

1.     f(x,y) = 1 - x^2 - y^2

判断方法:
可分别令x,y,z为零,得图像与坐标面交线,进一步判断

 令y = 0,得图像与x-z平面交线为z =  1 - x^2 ,为一抛物线。再令x=0,不难看出,该图像为一以(0,0,1)为顶点的抛物面

附:MATLAB绘制二元函数图像代码

% 创建 x 和 y 的网格数据
[x, y] = meshgrid(-1:0.1:1, -1:0.1:1);

% x后无小数点,则将执行矩阵或向量的整体运算
%加上小数点将进行逐元素的操作
z = 1 - x.^2 - y.^2;

% 绘制三维图形
figure;
surf(x, y, z);
xlabel('x');
ylabel('y');
zlabel('z');
title('z = 1 - x^2 - y^2');

 2.      z = y^2 - x^2

 其他可视化方法:contour图(等高线图)

MATLAB绘制:

[x, y] = meshgrid(-1:0.1:1, -1:0.1:1);
z = y.^2 - x.^2;

% 绘制等高线图
figure;
contourf(x, y, z);
xlabel('x');
ylabel('y');
title('Contour Plot of z = y^2 - x^2');

% 添加 colorbar
colorbar;

偏导数

定义(极限)

 几何意义

过P0作平面y = y0 ,与z  = f(x,y)的交线为C

 C:\begin{cases} y = y_0\\z = f(x,y)\end{cases}

 f_x 则为一元函数 f(x,y_0) 在 x = x_0 处的导数,也可视为曲线C在 P0处切线  T_x 对于x轴的斜率,即 T_x 与 x 轴正向(注意是正向)所成倾角的正切 tan{\alpha} 

由此可引申出偏导数的具体求法,即对一个自变量求偏导时,把其余自变量看作常数,从而变成一元求导问题

几何应用

曲面 z = f(x,y)在(x0,y0)处,由上述求偏导的做法可得

\Delta{z} = z - z_0 = f_x(x_0,y_0) + f_y(x_0,y_0) + o(\rho)

(其中\rho 为较偏导数高阶的无穷小量)

进一步有切平面 

z - z_0 = f_x(x_0,y_0)(x_0,y_0) +f_y(x_0,y_0)(x_0,y_0)

 由切平面方向数可知法线方向数为

\pm(f_x(x_0,y_0),f_y(x_0,y_0),-1)

过该点法线方程

\frac{x-x_0}{f_x(x_0,y_0)}=\frac{y-y_0}{f_y(y_0,y_0)} =\frac{z-z_0}{-1} 

全微分

dz = A \Delta{x} + B \Delta{y} + o(\rho)

链式法则

复合函数单变量

 例:

​​​​​直接应用上述公式求导得


 如果复合函数变量更多呢?

 具体推导:

 最后写成:

 如何记忆(树状图):

 可以将复合函数间变量关系用树状图形式表示

 求  \frac{\partial z}{\partial u}  时,只需将z到u上每一条路径上得各个偏导数相乘,再将所有乘积相加即可


例:一元函数求导

y = x^x

在一元函数情形下,可以采用对数求导法。在引入复合函数求导后,可从二元函数视角求导

令:

y = u^v,u = x,v = x

 应用前文方法得:

\frac{\mathrm{d}y}{\mathrm{d}x} = y_u\frac{\mathrm{d}u}{\mathrm{d}x} + y_v\frac{\mathrm{d}v}{\mathrm{d}x} = x^x(1+\ln{x})

最优化问题(极最值)

1.极值必要条件

f 在 (x_0,y_0) 存在偏导数且取到极值,则

f_x(x_0,y_0) = 0,f_y(x_0,y_0) = 0

  • 对于 f(x,y) = 1- x^2 - y^2  在(0,0)处两偏导数均为0,进一步可验证得函数在该点取得极大值
  • 而对于前文另外一个例子 f(x,y) = y^2 - x^2 ,函数在(0,0)处两偏导数均为0,那么(0,0)点就是函数的极值点了吗?

2.下面引出极值的充分条件

类比一元函数情形下通过二阶导推导极值充分条件,我们令:

 A = f_{xx}(x_0,y_0),B = f_{xy}(x_0,y_0),C = f_{yy}(x_0,y_0)

(充分条件)设二元函数 f 在 P_0 某领域上有二阶连续偏导数且 P_0 满足上述极值必要条件,当

AC-B^2 > 0时,函数在该点取极小值,AC-B^2 < 0时,函数在该点取极大值,AC-B^2 > 0则不在该点取极值

另一种判断/记忆方法:

引入 f 在 P_0 点的黑塞矩阵H

H = \left[ \begin{array}{ccc} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \\ \end{array} \right]

 H为正定矩阵时,函数在该点取极小值,H为负定矩阵时,函数在该点取极大值,H为不定矩阵时,函数在该点不取极值.

最后再回到 f(x,y) = y^2 - x^2 中,  A = -2x,B = 0,C = 2y,AC-B^2 = 0,  函数在该点显然不取极值


应用:最小二乘法

即确定a,b,使对应直线与这n个点偏差平方和最小

f(a,b)=\sum_{i=1}^{n}(ax_i+b-y_i)^2

由极值点必要条件有

\left\{ \begin{aligned} f_a &= 2 \sum_{i=1}^nx_i(ax_i+b-y_i) = 0\\ f_b &= 2 \sum_{i=1}^nx_i(ax_i+b-y_i) = 0\\ \end{aligned} \right. 

整理有

再通过矩阵解方程组可得答案

还可以通过黑塞矩阵进一步验证得函数在该点取极小值

最值

 二元函数在有界闭区域上一定有最大值和最小值,要想求出函数最值,还需考察函数所有稳定点(偏导均为0),无偏导点,所属区域界点

方向导数和梯度 

梯度

若w = f(x,y,z) 记梯度为grad w

\nabla w = <2x,2y,-2z> = <4,2,-2>\nabla w = <2x,2y,-2z> = <4,2,-2>

 梯度方向:函数值增长最快方向,垂直于该点切平面

 例:确定曲面 x^2 + y^2 - z^2 = 4 在 (2,1,1)点处切平面

思路:梯度方向垂直与该点切平面,可视为切平面一法向量

令 w = f(x,y,z)

\nabla w = <2x,2y,-2z> = <4,2,-2>

 故切平面为 2x + y - z = 4

方向导数

 方向导数用以描述函数在特定方向上的变化率(由沿坐标轴变化率推广)

 推导:

即求函数在向量u方向上的变化率 dw/ds

将x,y 看成以s为参量函数有

\frac{\mathrm {d}w}{\mathrm {d}s} = \frac{\mathrm {d}w}{\mathrm {d}x} \frac{\mathrm {d}x}{\mathrm {d}s} + \frac{\mathrm {d}w}{\mathrm {d}y} \frac{\mathrm {d}y}{\mathrm {d}s}

同时

x = scos{\alpha},y = scos{\beta}​​​​​​​

记向量u与x轴,y轴正方向夹角分别为 \alpha,\beta ,上式又可写成

 \frac{\mathrm {d}w}{\mathrm {d}s} = \frac{\mathrm {d}w}{\mathrm {d}x} cos{\alpha}+ \frac{\mathrm {d}w}{\mathrm {d}y} cos{\beta}

 联系前文梯度,可继续改写为

\frac{\mathrm {d}w}{\mathrm {d}s} = \nabla w \cdot \hat{u}

由此可知,当u方向与函数该点梯度方向一致时,梯度与u向量点积最大,即函数在该方向上变化率最大 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值