拉格朗日数乘法

隐函数

隐函数自变量与因变量之间关系通常由方程式确定
对于方程
F ( x , y ) = 0 F(x,y) = 0 F(x,y)=0

条件极值

该类极值问题受到各类不同条件的限制。例如,对于隐函数 f(x,y) = xy - 3 = 0,确定该函数图像上到原点距离最近的点。距离可表达为为
D ( x , y ) = x 2 + y 2 D(x,y) = \sqrt{x^2 + y^2} D(x,y)=x2+y2
依题意,该距离函数自变量还需满足条件
x y = 3 xy = 3 xy=3
过去遇到此类问题可以采用消元再求解,而在变量更多的一般问题中可以采用拉格朗日数乘法,不依赖消元解决问题
先从最简单的二元问题入手,要求函数
z = f ( x , y ) z = f(x,y) z=f(x,y)
在P点的极值,其中(x,y)受条件
C : φ ( x , y ) = 0 C:\varphi(x,y) = 0 C:φ(x,y)=0
控制
从几何角度看,等高线(contour图)f(x,y) = f( P)与曲线C有公共切线时,f 取条件极值

由切线关系可得方程组
{ f x ( P ) + λ 0 φ x ( P ) = 0 f y ( P ) + λ 0 φ y ( P ) = 0 φ ( P ) = 0 \left\{\begin{array}{l} f_x(P) + \lambda_0\varphi_x(P) = 0\\ f_y(P) + \lambda_0\varphi_y(P) = 0\\ \varphi(P) = 0\\ \end{array}\right. fx(P)+λ0φx(P)=0fy(P)+λ0φy(P)=0φ(P)=0
可构造函数
L ( x , y , λ ) = f ( x , y ) + λ φ ( x , y ) L(x,y,\lambda) = f(x,y) + \lambda\varphi(x,y) L(x,y,λ)=f(x,y)+λφ(x,y)
将上述三个方程改写为
{ L x ( x , y , λ 0 ) = f x ( P ) λ 0 + φ x ( P ) = 0 L y ( x , y , λ 0 ) = f y ( P ) + λ 0 φ y ( P ) = 0 L λ ( x , y , λ 0 ) = φ ( P ) = 0 \left\{\begin{array}{l} L_x(x,y,\lambda_0) =f_x(P)\lambda_0+\varphi_x(P) = 0\\ L_y(x,y,\lambda_0) =f_y(P) + \lambda_0\varphi_y(P) = 0\\ L_{\lambda}(x,y,\lambda_0)=\varphi(P) = 0\\ \end{array}\right. Lx(x,y,λ0)=fx(P)λ0+φx(P)=0Ly(x,y,λ0)=fy(P)+λ0φy(P)=0Lλ(x,y,λ0)=φ(P)=0
解方程组可得答案
注意:拉格朗日数乘法不能直接判断该点为极大值点或极小值点

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值