# 高光谱图像分类项目进展
## 项目简介
我们的项目目标是基于高光谱图像数据实现图像分类,通过先进的机器学习模型,分类不同的地面物体。该项目不仅有助于推动人工智能技术在图像处理中的应用,同时也在多个领域中具有实际应用价值,例如农业、环境监测等。
## 进展与成果
在过去的冲刺中,我们已经成功实现了以下功能:
- **注册功能**:用户通过手机号注册,完成短信验证并设置密码。系统会自动生成学号并返回,用户无需重复输入登录信息,提升了用户体验。
- **前端优化**:我们正在不断优化前端页面,使其更简洁且易于操作。设计理念是让用户在体验中更加流畅。
简单介绍一下注册功能:用户需要提供手机号,并通过短信验证并设置密码,此时后台会返回一个随机生成的格式固定的学号,格式为:
220+x000+xxxx,并将这些信息插入到数据库中,同时直接跳转到预测功能的界面,这样方便用户再次输入账号密码进行登录,也比较契合设计的初衷(微信二维码登录就是扫完注册之后马上就可以使用,这样用户体验会比较好)。
功能展示视频链接如下:
## 遇到的挑战
虽然我们已经取得了一定的进展,但项目部署和前端优化仍面临一些挑战:
- 在Gitee的版本控制和文件上传方面遇到了一些问题,需要持续调试。
- 网站部署的过程中,DNS设置和Nginx配置仍存