题意:有n个点和n-1条双向路,每当在一个点安装5G塔台,距离它k以内的点也可以安装5G塔台,现在希望安装顺序的字典序最小,请输出最小的顺序。
思路:显然第一个塔台会被安装在点1。在vp的时候想到了用一个set存到达的点(我可能最近跟set杠上了,看什么都是set,前一场edu的C也脑抽了用set,直接寄),然后用bfs寻找能够安装塔台的点,在main函数搞个循环就行了。但是剪枝环节条件设置错了,定为了一旦这个点之前被搜索过就结束,实际应该是搜索到这个点的步数(dis值)比现在这一轮搜索到的步数少结束。因为dis值少说明之前从它开始搜的范围肯定比现在从它开始搜的范围广,那就不用重新搜了。
hack数据:
7 2
1 2
2 4
2 7
6 7
5 6
3 6
修改后的思路:先用链式前向星存图,然后开一个优先队列存可以安装的点,在开一个类型为pair的queue进行bfs,设置vis,dis数组分别判断是否已经在优先队列里和最短的步数。
p.s.注意队列已经没有值但仍然pop()的问题,会报runtime error
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int M=1e5+5;
const int N=2*M;
int e[N],ne[N],h[N],idx;
int vis[M];
priority_queue<int,vector<int>,greater<int> >d;
int dis[M];
int n,k;
typedef pair<int,int>PII;
int p[M];
void add(int a,int b){
e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
void bfs(int f){
queue<PII>q;
q.push({0,f});
dis[f]=0;
while(!q.empty()){
PII dif=q.front();
q.pop();
int a=dif.first;
int b=dif.second;
for(int i=h[b];i!=-1;i=ne[i]){
int c=e[i];
if(!vis[c]||dis[c]>a+1){
dis[c]=a+1;
if(!vis[c]){
vis[c]=1;
d.push(c);
}
if(dis[c]<k)q.push({dis[c],c});
}
}
}
}
int main(){
std::ios::sync_with_stdio(false);
cin.tie(0),cout.tie(0);
memset(h,-1,sizeof h);
cin>>n>>k;
for(int i=1;i<n;i++){
dis[i]=n+1;
int a,b;
cin>>a>>b;
add(a,b);
add(b,a);
}
dis[n]=n+1;
int cnt=0;
int kk;
d.push(1);
while(cnt<n){
kk=d.top();
d.pop();
p[cnt++]=kk;
vis[kk]=1;
bfs(kk);
}
for(int i=0;i<cnt;i++){
cout<<p[i]<<" ";
}
}
思考:还有一种做法是dfs(x,step,fa)。以后做图论先把vis和dis数组开好吧,毕竟现在看来这两个数组是必不可少的。