Ollama+GraphRAG本地部署教程

Ollama+GraphRAG本地部署教程

一、安装Ollama

Windows和Linux系统:在Terminal中输入命令:

curl -fsSL https://ollama.com/install.sh | sh

运行命令,验证安装是否成功:

ollama --version

详细教程:https://blog.csdn.net/2401_84204207/article/details/141090400

官方教程:https://github.com/ollama/ollama/blob/main/docs/linux.md

二、安装mistral和nomic-embed-text

本地使用GraphRAG,需要先在ollama中部署以下两个模型:

  1. LLM:Mistral

    ollama pull mistral  #llm
    
  2. embedding模型:nomic-embed-text

    ollama pull nomic-embed-text  #embedding
    

三、GraphRAG部署

Microsoft官方GitHub:https://github.com/microsoft/graphrag

Microsoft 的 GraphRAG 使用 OpenAI 的 API,因此对网络环境有要求,且使用成本较高。若想降低成本并避免网络依赖,可以参考以下步骤改用本地模型:

  1. 创建conda环境

    conda create -n graphrag-ollama-local python=3.10
    conda activate graphrag-ollama-local
    
  2. 克隆仓库,下载项目文件

    git clone https://github.com/TheAiSingularity/graphrag-local-ollama.git
    
  3. 切换路径

    cd graphrag-local-ollama/
    
  4. 安装graphrag包

    pip install -e .
    
  5. 创建graphrag需要的 ./ragtest/input 文件夹

    mkdir -p ./ragtest/input
    
  6. 将示例数据文件夹 input/ 复制到 ./ragtest中。也可在 ./ragtest/input 文件夹中放入txt格式的数据

    cp input/* ./ragtest/input
    
  7. 初始化 ./ragtest文件夹,获取必要文件

    python -m graphrag.index --init --root ./ragtest
    
  8. 移动 settings.yaml 文件,这是使用 ollama 本地模型配置的主要预定义配置文件

    cp settings.yaml ./ragtest
    

如果在按照教程安装时出现缺少 prompts 文件夹的情况,请按照以下步骤添加该文件夹:

  1. 下载graphrag库

    pip install graphrag
    
  2. 创建文件夹 ./ragtest1/

    mkdir -p ./ragtest1/input
    
  3. 初始化工作区

    python -m graphrag.index --init --root ./ragtest1
    
  4. 将ragtest1中的prompts拷到现在项目中的ragtest下

在这里插入图片描述

详细教程:https://github.com/TheAiSingularity/graphrag-local-ollama

四、运行GraphRAG

  1. 运行索引,创建graph

    python -m graphrag.index --root ./ragtest
    
  2. 运行查询(仅支持全局方法)

    python -m graphrag.query --root ./ragtest --method global "What is machinelearning?"
    

五、在Python代码中运行查询

可以使用 Python 的 subprocess 模块来执行查询的命令,示例如下:

import subprocess

# 定义命令
command = "python -m graphrag.query --root ./ragtest --method global \"What is machinelearning?\""

# 执行命令并获取输出
proc = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
outinfo, errinfo = proc.communicate()

# 打印输出内容
print(outinfo.decode("utf-8"))  # 获取标准输出
print(errinfo.decode("utf-8"))  # 获取错误输出

Ollama是一个用于训练、部署和管理大规模机器学习模型的平台,它通常与分布式计算框架如Apache Ray或TensorFlow一起使用。要在本地环境中使用OllamaPython搭建AI大模型,你可以按照以下步骤操作: 1. **安装依赖**: - 安装Ollama客户端:访问Ollama官网下载适合的Python SDK并安装。 - 安装必要的库:例如Ray、TensorFlow或其他你喜欢的深度学习框架。 ```bash pip install ollama-sdk tensorflow ``` 2. **配置环境**: - 创建一个新的Ray cluster(如果尚未安装),可以使用`ray start`命令启动。 - 配置Ollama,通常需要提供一个配置文件或通过环境变量指定Ollama服务器地址。 3. **模型训练**: 使用Ollama提供的API创建任务,将模型定义、数据加载以及训练过程封装成函数。示例代码可能类似这样: ```python import ray from ollama import create_or_connect # 连接到Ollama集群 client = create_or_connect() @ray.remote(num_gpus=1) # 如果需要GPU加速 def train_model(model_config, data): model = Model(config=model_config) return model.fit(data) # 分配任务到集群上 model_train_task = train_model.remote(model_config, training_data) # 等待任务完成 trained_model = ray.get(model_train_task) ``` 4. **模型保存和加载**: 训练完成后,保存模型以便后续使用: ```python trained_model.save("my_model") ``` 5. **模型部署**: Ollama支持模型部署到生产环境,但在本地环境这一步通常是不必要的。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值