Voice Conversion语音转换

语音转换(Voice Conversion, VC)是一种技术,允许将一个说话者的声音转换为另一个说话者的声音,同时保留内容。

Preserved:content内容

语音转换的应用:转换说话人,说话风格,提升可懂度,数据增强。

在实际应用中,常常是直接将源语音(T)转换为目标语音(T’),并通过声码器(Vocoder)实现。

声码器的选择:规则基础(Griffin-Lim算法)或深度学习(如WaveNet)。

一、Feature Disentangle特征解耦

组件

描述

内容编码器

处理语音的内容信息。

说话者编码器

处理说话者的声音特征。

解码器

生成目标语音。

假设我们知道需要训练出的说话人,使用说话人信息,对于speaker encoder,我们可以使用one-hot编码替换。但是这样的issue是预训练编码器面临有新说话者时的挑战,可能需要使用说话者嵌入。

Adversarial Training对抗训练

通过对抗训练降低说话者分类器的准确性,使内容编码器学习如何“欺骗”说话者分类器。

这里的speaker classifier是在对抗训练,因为希望提取内容信息,说话人分类器分类效果不好,说明内容编码器提取效果好。


IN:实例规范化,每个通道减去均值,使得均值为0,除以方差,以去除说话人信息。

AdaIN:自适应实例规范化

Issue:如果在训练时,使用内容编码器和说话人编码器编码的说话人是同一个,那么在编码不同说话人时合成质量不好。

2nd Stage Training两阶段训练

这里的speaker classifier并不是对抗,而是在判断是哪个说话人,鉴别器才是在对抗,合成的语音想要欺骗鉴别器,而鉴别器要将合成的语音识别出来。

在两阶段训练中,还有一个patcher补丁,它合成的语音对一些读音缺失信息进行补充

Only learn the patcher in the 2nd stage

二、Direct Transformation直接转换法

能够在没有成对数据的情况下有效工作。

Cycle GAN

为什么还有G(Y to X)因为判别器D(Y)根据某些特征判断合成的语音是否属于speaker Y,但是在这种情况下很可能生成器为了使判别器将结果判断为speaker Y,放弃应该保留的信息,因此为了保证保留需要的信息,加入G(Y to X)。

Issue:如果有N个speaker,需要N*(N-1)次合成,且一旦有新的speaker加入需要全部重新训练一遍。

Strat GAN

没有固定生成器和判别器,只需要这一个架构就可以。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值