多策略黑猩猩优化算法研究及其工程应用 黄倩 MATLAB代码
针对基本黑猩猩优化算法存在的依赖初始种群、易陷入局部最优和收敛精度低等问题,提出一种多
策略黑猩猩优化算法(Chaotic Elite Opposition-Based Simple Method Improved COAEOSMICOA)。
在EOSMICOA 算法中,利用混沌精英反向学习策略对黑猩猩个体位置进行初始化,提高种群的多样性和质量,同时在位置更新过程中利用单纯形法和群个体记忆机制对较差个体进行改进,进一步提高算法的局部开发能力和勘探能力,提高算法的寻优精度
代码写的很清晰,各种改进点在哪里标的也有注释,适合学习。
提供源代码和论文
ID:5129672311044570一个人的け世界